Locally compact abelian groups and the variety of topological groups generated by the reals
HTML articles powered by AMS MathViewer
- by Sidney A. Morris
- Proc. Amer. Math. Soc. 34 (1972), 290-292
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294560-4
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 51 (1975), 503.
Abstract:
An LCA group G can be “manufactured” from the group of reals, via repeated operations of taking quotients, subgroups and (arbitrary) cartesian products if and only if G is compactly generated.References
- M. S. Brooks, Sidney A. Morris and Stephen A. Saxon, Generating varieties of topological groups (submitted).
- Su Shing Chen and Sidney A. Morris, Varieties of topological groups generated by Lie groups, Proc. Edinburgh Math. Soc. (2) 18 (1972/73), 49–53. MR 323958, DOI 10.1017/S0013091500026146
- Siegfried Grosser and Martin Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1–40. MR 284541, DOI 10.1515/crll.1971.246.1
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145–160. MR 259010, DOI 10.1017/S0004972700041393
- Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145–160. MR 259010, DOI 10.1017/S0004972700041393
- Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145–160. MR 259010, DOI 10.1017/S0004972700041393
- Martin Moskowitz, Homological algebra in locally compact abelian groups, Trans. Amer. Math. Soc. 127 (1967), 361–404. MR 215016, DOI 10.1090/S0002-9947-1967-0215016-3
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 290-292
- MSC: Primary 22B05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294560-4
- MathSciNet review: 0294560