Interpolation of $l^{q}$ sequences by $H^{p}$ functions
HTML articles powered by AMS MathViewer
- by B. A. Taylor and D. L. Williams PDF
- Proc. Amer. Math. Soc. 34 (1972), 181-186 Request permission
Abstract:
It is pointed out that the method used by L. Carleson to study interpolation by bounded analytic functions applies to the study of the analogous problem for ${H^p}$ functions. In particular, there exist sequences of points in the unit disc which are not uniformly separated, but which are such that every ${l^q}$ sequence can be interpolated along this sequence by an ${H^p}$ function $(1 \leqq p \leqq q \leqq + \infty )$.References
- Lennart Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921β930. MR 117349, DOI 10.2307/2372840
- Peter L. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc. 75 (1969), 143β146. MR 241650, DOI 10.1090/S0002-9904-1969-12181-6
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- P. L. Duren and H. S. Shapiro, Interpolation in $H^{p}$ spaces, Proc. Amer. Math. Soc. 31 (1972), 162β164. MR 289781, DOI 10.1090/S0002-9939-1972-0289781-0
- Lars HΓΆrmander, $L^{p}$ estimates for (pluri-) subharmonic functions, Math. Scand. 20 (1967), 65β78. MR 234002, DOI 10.7146/math.scand.a-10821
- Richard A. Hunt, On $L(p,\,q)$ spaces, Enseign. Math. (2) 12 (1966), 249β276. MR 223874
- H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961), 513β532. MR 133446, DOI 10.2307/2372892
- A. K. Snyder, Sequence spaces and interpolation problems for analytic functions, Studia Math. 39 (1971), 137β153. MR 306924, DOI 10.4064/sm-39-2-137-153
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 181-186
- MSC: Primary 30A78
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294652-X
- MathSciNet review: 0294652