A norm condition for disconjugacy of complex differential systems
HTML articles powered by AMS MathViewer
- by Shui Nee Chow and Pui-kei Wong
- Proc. Amer. Math. Soc. 34 (1972), 147-151
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294753-6
- PDF | Request permission
Abstract:
A first order linear vector differential equation with coefficients holomorphic in the unit disk is considered. A criterion for disconjugacy expressed in terms of the Euclidean norm is given, and the condition is the best possible for this particular norm.References
- Fritz Carlson, Quelques inégalités concernant les fonctions analytiques, Ark. Mat. Astr. Fys. 29B (1943), no. 11, 6 (French). MR 0011717
- W. J. Kim, Disconjugacy and disfocality of differential systems, J. Math. Anal. Appl. 26 (1969), 9–19. MR 236464, DOI 10.1016/0022-247X(69)90172-3
- A. Lasota and C. Olech, An optimal solution of Nicoletti’s boundary value problem, Ann. Polon. Math. 18 (1966), 131–139. MR 204742, DOI 10.4064/ap-18-2-131-139
- David London and Binyamin Schwarz, Disconjugacy of complex differential systems and equations, Trans. Amer. Math. Soc. 135 (1969), 487–505. MR 0237875, DOI 10.1090/S0002-9947-1969-0237875-2
- Zeev Nehari, Oscillation theorems for systems of linear differential equations, Trans. Amer. Math. Soc. 139 (1969), 339–347. MR 239185, DOI 10.1090/S0002-9947-1969-0239185-6
- Binyamin Schwarz, Disconjugacy of complex differential systems, Trans. Amer. Math. Soc. 125 (1966), 482–496. MR 206371, DOI 10.1090/S0002-9947-1966-0206371-8
- Binyamin Schwarz, Norm conditions for disconjugacy of complex differential systems, J. Math. Anal. Appl. 28 (1969), 553–568. MR 249722, DOI 10.1016/0022-247X(69)90008-0
- Binyamin Schwarz, Mappings of domains by components of solutions of differential systems, J. Differential Equations 10 (1971), 314–323. MR 291530, DOI 10.1016/0022-0396(71)90054-4
- Pui-kei Wong, A criterion for disfocality, Proc. Amer. Math. Soc. 30 (1971), 112–114. MR 279365, DOI 10.1090/S0002-9939-1971-0279365-1 Joseph Zaks, On the length of some arcs in the unit sphere (to appear).
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 147-151
- MSC: Primary 34A20
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294753-6
- MathSciNet review: 0294753