Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the localization of rectangular partial sums for multiple Fourier series


Author: Fon Che Liu
Journal: Proc. Amer. Math. Soc. 34 (1972), 90-96
MSC: Primary 42A92; Secondary 42A62
DOI: https://doi.org/10.1090/S0002-9939-1972-0294993-6
MathSciNet review: 0294993
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The question of the localization for rectangular partial sums of the multiple Fourier series for functions of Sobolev spaces is settled.


References [Enhancements On Off] (What's this?)

  • [1] L. Cesari, Sulle funzioni di piu variabili generalmente a variazione limitatae sulla convergenza delle relative serie multiple di Fourier, Commentationes, Pontificia Academia Scientiarum, Vol. III, N.7, 171-197.
  • [2] Casper Goffman and Fon-che Liu, On the localization property of square partial sums for multiple Fourier series, Studia Math. 44 (1972), 61–69. MR 312147, https://doi.org/10.4064/sm-44-1-61-69
  • [3] V. A. Il′in, Localization and convergence problems for Fourier series in fundamental function systems of Laplace’s operator, Uspehi Mat. Nauk 23 (1968), no. 2 (140), 61–120 (Russian). MR 0223823
  • [4] B. M. Levitan, On summability of multiple series and Fourier integrals, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 1073–1076 (Russian). MR 0070765
  • [5] Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511
  • [6] S. L. Sobolev, Applications of functional analysis in mathematical physics, Translated from the Russian by F. E. Browder. Translations of Mathematical Monographs, Vol. 7, American Mathematical Society, Providence, R.I., 1963. MR 0165337
  • [7] L. V. Žižiašvili, Sopryazhennye funktsii i trigonometricheskie ryady, Izdat. Tbilis. Univ., Tbilisi, 1969 (Russian). MR 0261275
  • [8] Antoni Zygmund, Trigonometrical series, Chelsea Publishing Co., New York, 1952. 2nd ed. MR 0076084

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A92, 42A62

Retrieve articles in all journals with MSC: 42A92, 42A62


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0294993-6
Keywords: Sobolev spaces, multiple Fourier series, localization, Lipschitz classes
Article copyright: © Copyright 1972 American Mathematical Society