On the localization of rectangular partial sums for multiple Fourier series
HTML articles powered by AMS MathViewer
- by Fon Che Liu PDF
- Proc. Amer. Math. Soc. 34 (1972), 90-96 Request permission
Abstract:
The question of the localization for rectangular partial sums of the multiple Fourier series for functions of Sobolev spaces is settled.References
-
L. Cesari, Sulle funzioni di piu variabili generalmente a variazione limitatae sulla convergenza delle relative serie multiple di Fourier, Commentationes, Pontificia Academia Scientiarum, Vol. III, N.7, 171-197.
- Casper Goffman and Fon-che Liu, On the localization property of square partial sums for multiple Fourier series, Studia Math. 44 (1972), 61–69. MR 312147, DOI 10.4064/sm-44-1-61-69
- V. A. Il′in, Localization and convergence problems for Fourier series in fundamental function systems of Laplace’s operator, Uspehi Mat. Nauk 23 (1968), no. 2 (140), 61–120 (Russian). MR 0223823
- B. M. Levitan, On summability of multiple series and Fourier integrals, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 1073–1076 (Russian). MR 0070765
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511
- S. L. Sobolev, Applications of functional analysis in mathematical physics, Translations of Mathematical Monographs, Vol. 7, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by F. E. Browder. MR 0165337
- L. V. Žižiašvili, Sopryazhennye funktsii i trigonometricheskie ryady, Izdat. Tbilis. Univ., Tbilisi, 1969 (Russian). MR 0261275
- Antoni Zygmund, Trigonometrical series, Chelsea Publishing Co., New York, 1952. 2nd ed. MR 0076084
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 90-96
- MSC: Primary 42A92; Secondary 42A62
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294993-6
- MathSciNet review: 0294993