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LINEAR  OPERATORS  FOR  WHICH  T*T

AND   TT*  COMMUTE1

STEPHEN  L.   CAMPBELL

Abstract. Linear operators 7"for which T* rand TT* commute

are studied. Examples are given to show that this class of operators

is distinct from several other operator classes. It is proven that if

7"* 7" and TT* commute and T is hyponormal, then T has an in-

variant subspace. A generalization of this theorem is given.

In this paper we shall investigate bounded linear operators F on a

separable Hilbert space H for which T*T and TT* commute. After

establishing the basic properties of such operators, we will give examples

and discuss how this class of operators relates to those already studied

by previous authors. Finally we shall show that if such an operator is

hyponormal then it has an invariant subspace.

1. In studying a general operator T, the operators T*T and TT*

frequently occur. For example they appear both in the polar decomposition

of an operator and in the models for contractions [2, §6]. A natural

question to ask then is for which operators do F*Fand TT* commute?

If Tx and T2 are linear operators, then by definition [Tx, T2]=TXT2—

T2TX. We will call an operator binormal if [T*T, TT*]=0. Clearly the set

of all binormal operators is closed in the uniform operator topology and

contains the quasinormal operators. T is quasinormal if [T, T*T]=0.

2. Our first theorem gives a simple characterization of binormal

operators.

Theorem 1. If T has the polar decomposition T= UP where the null

space of U equals the null space of P, then [T*T, TT*]=0 if and only if

[P, UPU*]=0.
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Proof. We observe first that U*U is the projection onto the range of P.

Thus U*UP=P since F=0. Then [T*T, TT*]=0o[P2, UP2U*]=0o
[P, (UP2U*)1/2]=0o[P, UPU*]=0.

3. The set of all binormal operators, (BN), has some nice algebraic

properties as the next easily proved proposition shows.

Proposition 1. If Te (BN)={F: [T*T, FF*]=0} and if a is any
complex number, then

(1) aFe(BN),

(2) F* e (BN), and

(3) T-ie&N) if it exists.

Proof.   The proof is obvious.

However, (BN) is not closed under addition even when the operators

commute. For let Tx=[°0 0]andF2=[0 ?]. It is easy to verify that Fxe(BN).

Clearly F2 e (BN). Let T=TX+T2=[l {]. Then [T*T, TT*]=[°2 ~l] and

F £ (BN). Notice that this example also shows that F e (BN) does not

imply pl+ T e (BN) for complex scalars p.

4. We will now show that (BN) is independent of several major classes

of operators.

Definition 1.    Fis hyponormal if and only if F*F—FF*_0.

Definition 2. F is normaloid if and only if the spectral radius of F,

r(F), equals || F||.
Definition 3. F is spectraloid if and only if the numerical radius of F,

w(T), equals r(T).

It is well known that if Fis hyponormal, then it is normaloid. Further-

more, normaloid implies spectraloid. If Fis in any of these three classes,

then F need not satisfy the equation [T*T, FF*]=0.

Example 1. If F=[g J], then ||F|| = 1, vi-(F)=|, r(F)=0, and F is

binormal. Thus there are nonspectraloid operators in (BN).

Example 2. Let 5 be a weighted shift. Then S*S and SS* are both

diagonal operators and hence commute. In particular, let F be the

unilateral weighted shift with weight sequence {1, \, 1, 1, • • •}. Then

r(F) = iv(F)=||F|| = l. Fis not hyponormal since the weight sequence is

not monotonie nondecreasing. Thus Fis binormal and normaloid but not

hyponormal.

Example 3. If F is the bilateral weighted shift Te(=aei+i for /_0,

Tei=be2, Fe¿=ei+1 for ¡_2, 0<a<Z><l, and {e^fL-oo an orthonormal

basis for 77, then Fis hyponormal but not subnormal [3, Problem 160].

Remark. Examples 1, 2, and 3 are not new but illustrate the diversity

of binormal operators. Since the shifts are all binormal, it is easy to

construct further examples such as compact operators.
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That the examples are all shifts or shiftlike (nilpotent) is due entirely

to ease of construction. There are many other binormal operators. For

example T= [J _J] is binormal and is not normal and not nilpotent. In

fact, T2=I.

5. We note that the operator in Example 3 is hyponormal and invert-

ible but not subnormal. Thus the next theorem involves a nontrivial class of

operators.

Theorem 2. If T is hyponormal and [T*T, TT*]=0, then T has an

invariant subspace.

Proof. T trivially has an invariant subspace unless both T and T*

are one-to-one. Let A = TT* and B— T*T. B^.A^.0 since Fis hyponormal.

If (a, b) is an open interval and Ec(ô) is the spectral measure for the

selfadjoint operator C, then

1  ["-*
Ec(a, b) = lim lim -        g(C, p, e) dp

á->0+ £->0+  77 Ja+à

where

g(C, p, e) = (lj2i){((p - si) - C)'1 - ((p + ei) - C)"1}

= e((p - Cf + eV

and the limits are strong limits [1, p. 921]. Since TB=AT we have

TEB(a, b)=EA(a, b)T.

Let F(S) be the spectral measure of the commutative Banach algebra

generated by A and B. A= j" f(s)F(ds) and B= j"g(s)F(ds) for some

measurable functions/ g [1, p. 895]. g(s)^.f(s)^.0 almost everywhere dF

since B^.A^.0. Also a(A)=essential range off and <r(i?) = the essential

range of g.f(s)>0 almost everywhere dF since A is one-to-one. Let X¡(-)

be the characteristic function of the set ô.

Then

EB(0, b) = X{0.b)(B) = (x(0.b)(g(s))F(ds) = F({*:0 < g(s) < b}).

Similarly F¿(0, b) = F({s:0<f(s)<b}). EB(0, b)<=EA(0, b) since

{s:0 < g(s)< b} ç {s:0<f(s)<b}

except for a set of zero dF measure. But TEB(0, b) = EA(0, b)T. Let Nc

be the null space of Fc(0, b). Then TNB^NA<^NB and T will have an

invariant subspace provided we can find a b for which EB(0, b) is non-

trivial. Such a b exists unless B has a one point spectrum. But then

T*T=oiI, <x>0, and a~1/2Fis an isometry. Then <x~1/2Fhas an invariant

subspace. Hence T does.
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Remark. If Fis binormal, then so is F*. We could have assumed then

in Theorem 2 that F or F* were hyponormal, that is, that F was semi-

normal.

6. Theorem 2 is a special case of the next theorem.

Theorem 3. Let A = TT*, B= T*T, and Ec(ô) the spectral measure of

C for C=A or C=B and ô a Borel subset of the real line. If there is an

interval (a, b) such that EA(a, b) and EB(a, b) are nontrivial projections and

EA(a, b)^EB(a, b) or EB(a, b)^.EA(a, b), then Thas an invariant subspace.

Proof. As in the proof of Theorem 2 we may assume that F is one-to-

one with dense range. Furthermore TEB(a, b)=EA(a, b)T for any interval

(a, b). Suppose (a, b) is as stated in Theorem 3. If EA(a, b)^EB(a, b),

we have NA^NB. Thus TNB^NA^NB and F has an invariant subspace.

If EB(a, b)^EA(a, b), let RC=N¿. Then TRB^RA^RB and Fagain has

an invariant subspace.
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