LOCAL DEGREE OF SEPARABILITY
AND INVARIANCE OF DOMAIN

L. B. TREYBIG

Abstract. In E^n an invariance of domain theorem may be
proved assuming the Jordan Brouwer Theorem. In this paper such
a theorem is proved for various locally compact, connected,
Hausdorff spaces which satisfy a certain local degree of separability
property. An example shows the separability condition may not be
removed. A second theorem yields additional information about
homogeneous spaces which satisfy the hypotheses of the first
theorem.

In ([2], [3], [4]) the invariance of domain for n-manifolds is proved
using either essential mappings or the Jordan Brouwer Theorem. The-
latter proof is generalized in Theorem 1 to certain locally compact, con-
ected Hausdorff spaces by adding hypotheses concerning local degree of
separability. Curiously enough, such a condition is necessary in the sense
that there is a counterexample (Example 1) to Theorem 1 if the separability
condition is omitted. Theorem 2 shows that if a homogeneous space X
satisfies the conditions of Theorem 1 plus two other restrictions, then X
is first countable and locally separable.

The space X will be said to have the invariance of domain property if
given $h:U \to X$ a homeomorphism of an open subset U of X into X, then
$h(U)$ is open. The local degree of separability, $l.s.(p)$, of X at $p \in X$ is the
least cardinal k such that an open neighborhood of p contains a dense sub-
set B with card $B \leq k$.

Theorem 1. Let (X, T) be a locally compact, connected Hausdorff
space such that if $a \in U \in T$ and $b \in X - U$, then there is a collection C of
mutually exclusive continua such that (1) $a \in \bigcup C \subset U$, where $\bigcup C$
is connected and open, (2) if $a \in g_0 \in C$ and $g \in C - \{g_0\}$, then g
separates a from b in X, (3) if $h: \bigcup C \to X$ is a homeomorphism into and $g \in C - \{g_0\}$ then
g contains a subcontinuum g' such that $X - h(g')$ is not connected, and (4)
card $C > \text{l.s.}(p)$ for each $p \in X$. Then X has the invariance of domain
property.

Received by the editors March 5, 1970.

AMS 1969 subject classifications. Primary 5460; Secondary 5440, 5478.

Key words and phrases. Invariance of domain, local degree of separability, homo-
geous space.
Proof. Suppose \(U \in T \) and \(h: U \to X \) is a homeomorphism into, but that \(y \in h(U) \cap \text{Cl}(X - h(U)) \). We may also suppose without loss of generality that \(U \) is connected. Let \(x = h^{-1}(y) \) and \(W \in T \) such that \(y \in W \subset \overline{W} \subset X - z \), where \(z \in h(U) \), and \(\overline{W} \) and \(\overline{W} \cap h(U) \) are both compact.

By the hypothesis there is a connected open set \(W_1 \) so that \(y \in W_1 \subset \overline{W_1} \subset W \). Some subcontinuum \(A \) of \(\overline{W_1} \) is irreducible between a point \(t \) of \(\overline{W_1} - h(U) \) and \(\overline{W_1} \cap h(U) \). \(A - h(U) \) is connected and has a point \(s \) of \(h(U) \) in its closure. Letting \(s = a, b = t, U = t \), we find a collection \(C' \) of continua as guaranteed in the hypothesis. But since \(\bigcup C' \) is open, some element \(B \) of \(C' \) separates \(s \) from \(t \) in \(X \) and also intersects \(A - h(U) \) and \(h(U) \cap \overline{W} \). Some subcontinuum \(B' \) of \(B \) is irreducible between a point of \(B \cap (A - h(U)) \) and \(\overline{B} \cap h(U) \). \(B' - h(U) \) has a point \(r \) of \(h(U) \) in its closure, where \(r \neq s \). Thus \(D = (A \cup B') - h(U) \) is a connected subset of \(X - h(U) \) with points \(r, s \) of \(h(U) \cap \overline{W} \) in its closure.

Let \(s \in M \in T \) where \(M \) has a dense subset \(N \) where \(\text{card } N = l.s.(s) \). Let \(a, b, V = \bigcup C \), and \(C \) be as in the hypothesis where \(a = h^{-1}(s), b = h^{-1}(r), \) and \(V = U \cap (h^{-1}(M \cap \overline{W_1} - r)) \). Assume \(a \in g_0 \in C \), and for each \(g \in C - \{g_0\} \) let \(g' \) denote a subcontinuum of \(g \) such that \(X - h(g') \) is the union of two mutually separated sets \(R_{g_1} \) and \(S_{g_1} \), where \(s \notin R_{g_1} \).

Now suppose \(g_1 \) and \(g_2 \) are two elements of \(C \) such that \(g_1 \) separates \(g_2 \) from \(a \) in \(V \). (Note that the methods of Theorem 81, p. 33 of [5] reveal that \(C - \{g_0\} \) is totally ordered under the relation \(g < g' \) if and only if \(g \) separates \(a \) from \(g' \) in \(X \); in fact, with the topology induced by \(<X - \{g_0\} \), it is also connected.) If \(R_{g_1} \) and \(R_{g_2} \) intersect, then \(h(g_1) \cap R_{g_2} \); for otherwise it would then follow that \(g_2' \) separates \(g_1 \) from \(a \) in \(U \); and thus \(g_2 \) would separate \(g_1 \) from \(a \) in \(X \), a contradiction. Therefore \(h(g_2) \cap R_{g_1} \subset R_{g_1} \). Let \(U_1 \) denote the complementary domain of \(U - g_2 \) containing \(h^{-1}(r) \). But \(D \cup \{r, s\} \cup h(U_1 \cup g_2) \) is a connected subset of \(X - h(g_2) \) which contains \(s \) and a point of \(R_{g_1} \), a contradiction. Thus \(R_{g_1} \subset X - R_{g_1} \).

Finally, \(L = \{M \cap \overline{R}_{g_1} : g \in C\} \) is a collection of disjoint open subsets of \(M \) where \(\text{card } L = \text{card } C > l.s.(s) \). Since each element of \(L \) contains an element of \(N \) it follows that \(\text{card } N \geq \text{card } C \), so \(l.s.(s) \geq \text{card } C \), a contradiction.

Corollary 1. A locally compact Moore space satisfying Axioms 0–5 of [5] has the invariance of domain property.

Proof. This follows from Theorem 1 with the aid of Theorem 58, p. 23 and Theorem 14, p. 171 of [5].

Remark. In Theorem 1 if \(X \) is a \(n \)-manifold, then for each \(x \in U \) open, let \(k \) be a homeomorphism from \(V \subset U \) onto the open unit ball in \(R^n \), where \(k(x) = 0 \). Let \(C = \{\{x\}\} \cup \{k^{-1}(S) : S \) is a sphere in \(R^n \) with center 0 and radius less than 1\}.
Lemma 1. Suppose \(a, b, U, C, V = \bigcup C \) are as in the hypothesis of Theorem 1, and \(a \in g_0 \in C \) and \(C - \{g_0\} \) is totally ordered under the relation \(\leq \) described above. Then, if for each \(g \in C - \{g_0\} \), the set \(X - g = R_g \cup S_g \) mutually separated where \(R_g \) is the component of \(X - g \) containing \(a \) then (1) there is a \(g \in C - \{g_0\} \) so that if \(g' \leq g \) then \(g' \cup R_{g'} \subseteq V \) and (2) if \(W \) is an open set containing \(g_0 \) then there exists \(g \in C - \{g_0\} \) such that \(R_g \cup g \subseteq W \).

Proof. Since \(X \) is locally connected, there is no harm in assuming each \(R_g \) above is the component of \(X - g \) containing \(a \). Note from above that \(g < g' \) implies \(g \cup R_g \subseteq R_{g'} \). Let \(M = \bigcap_{g \in C - \{g_0\}} R_g = \bigcap_{g \in C - \{g_0\}} g \cup R_g = \overline{M} \). Suppose \(M - g_0 \) is not void. Since \(M - g_0 \subseteq X - V \) and \(g_0 \) is closed, then \(g_0 \) and \(M - g_0 \) are mutually separated. Since \(X \) is connected let \(x \in (M - g_0) \cap C(\bigcup S_g) \). Let \(W_0 \) be a connected open set containing \(x \) so that \(W_0 \) has a compact closure. Let \(g \in C - \{g_0\} \) such that \(R_g \cup g \subseteq W_0 \). But \(W_0 \) must intersect \(g \) since otherwise \(W_0 \subseteq S_g \). Thus \(W_0 \) intersects \(S_g \) for all \(g' \leq g \). Using connected open subsets of \(X - g_0 \) whose closures are compact, and which intersect \(g \cup S_g \), a chain argument yields a continuum \(N \) so that \(b, x \in N \subseteq X - g_0 \). Thus if \(g' \leq g \) then \(g' \) intersects \(N \).

There is an open set \(R \) containing \(g_0 \) so that \(R \) is a compact subset of \(X - (N \cup M - g_0) \). For every \(g_i \leq g \) there is a \(g' \subseteq g_i \) so that \(g' \) intersects \(R \) and also \(N \). Thus, there is a point \(t \) of \(\text{Bd} R \) so that if \(t \in Q \subseteq T \) and \(g_i \subseteq g \) then there exists \(g' \subseteq g_1 \) such that \(g' \) intersects \(Q \). Since \(t \notin M \), \(t \in S_{g'} \) for some \(g' \). But if \(g'' < g' \) then \(g'' \) does not intersect \(Q = S_{g''} \), a contradiction. Thus \(g_0 = M \).

In part (2) suppose \(W_1 \) is an open set such that \(g_0 \subseteq W_1 \subseteq W \), where \(W_1 \) is compact. There is a finite set \(\{g_1, \ldots, g_n\} \) of elements of \(C - \{g_0\} \) such that \(\bigcup_{i=1}^n S_{g_i} \) covers \(\text{Bd}(W_1) \). Let \(g_i \) denote the least of these in the order \(\leq \). Since \(g_i \cup R_{g_i} \) is connected and contains \(a \) but no point of \(\text{Bd}(W_1) \), then \(g_i \cup R_{g_i} \subseteq W_1 \subseteq W \).

Theorem 2. If (1) \((X, T)\) is as in Theorem 1 and is homogeneous, (2) \(X_1 = 2^{X_0} \) and (3) for each such \(a, b, U \) described in Theorem 1 the element \(g_0 \) of \(C \) which contains \(a \) is \(\{a\} \), then \(X \) is locally separable and first countable.

Proof. Let \(a, b, U, C, V = \bigcup C \) be as in Theorem 1 where \(P \) is compact and \(a \in g_0 \in C \). Let \(g, g_1, g_2, \ldots \) be a sequence of elements of \(C - \{g_0\} \) such that \(g < g_{p+1} < g_p, p = 1, 2, \ldots \). There exists \(g' \in C - \{g_0\} \) so that \(g' \) is the g.l.b.\(\{g_2, g_3, \ldots \} \) and a point \(x \) of \(g' \) so that every open set containing \(x \) intersects infinitely many \(g_i \)'s.

Let \(C' \) be as in Theorem 1 for \(a' = x, b' = b, U' = U \), and let \(V' = \bigcup C' \) and \(x \in h_0 \in C' \). For each \(n \) let \(U_n = X - g_n \) and for each \(h \in C' - \{h_0\} \) let \(X - h = R_h \cup S_h \) mutually separated, where \(x \in R_h \) and \(R_h \) is connected. Let \(C' - \{h_0\} \) be ordered as above. Let elements \(h_1, h_2, \ldots \) of \(C' - \{h_0\} \) be chosen such that \(h_n \cup R_{h_n} \subseteq U_n \) and \(h_{n+1} < h_n \) for \(n = 1, 2, \ldots \).
Suppose \(x \in Q \in T \). But by Lemma 1 (since \(\{x\} = h_0 \)) there is an \(n \) so that \(R_n \cup h_n \subset Q \). Thus, \(X \) has a countable base at \(x \), so by homogeneity has one at each point.

Let \(y \in g' \) such that every open set containing \(y \) intersects a \(g'' \) for \(g'' < g' \), and let \(R_1, R_2, \cdots \) denote a countable base at \(y \). Select elements \(k_1, k_2, \cdots \) of \(C - \{g_0\} \) such that \(k_n \) intersects \(R_n \) and \(k_n < k_{n+1} \). The open segments \((k_n, g_n) \) form a countable base at \(g' \) in the connected totally ordered set \(C - \{g_0\} \). Analogous double use of the countable base at a point in \(X \) will produce for any \(g'' \in (C - \{g_0\}), \leq \) a countable base. By a theorem of Babcock [1], \(\text{card}(C - \{g_0\}) \leq 2^{\aleph_0} \). By the continuum hypothesis \(l.s.(p) \leq \aleph_0 \) for each \(p \in X \).

Background. Given a well-ordered sequence \(\alpha \) and a totally ordered set \(B \) let \(B^* \) denote the set of all sequences isomorphic to \(\alpha \), each term of which is in \(B \), and let \(B^* \) be understood to have the lexicographic order. Let \(l_0 = l = [0, 1] \) and let \(\alpha_1 = 1, 2, 3, \cdots \). Also, let \(\alpha_2 = \alpha_4 \) and let \(l_i = l_i^* \) \((i = 1, 2)\).

It is known (Babcock [1]) that if \(J \) denotes one of \(L_0, L_1, \) and \(L_2 \), then in the interval topology \((1) \) \(J \) is compact, connected, and first countable, and \((2) \) every pair of subintervals of \(J \) are homeomorphic. Furthermore, no two of \(L_0, L_1 \) and \(L_2 \) are homeomorphic. Let \(L_p = a_p b_p, p = 0, 1, 2 \).

Lemma 2. Let \(G \) denote an upper semicontinuous decomposition of \(L_2 \times L_2 \) such that \(g \in G \) provided \((1) g = \{(a, b)\} \) where \(a, b \in L_2 \) and \(b > a_2 \), or \((2) \) there is an element \((a, a_2) \) of \(L_2 \times L_2 \) such that \(g = \{(a', a_2) \in L_2 \times L_2 \) so that \(a \) and \(a' \) agree on all coordinates not preceded by an infinite number of coordinates. Then, there is no homeomorphism of \((L_2 \times L_2) / G \) into \(L_2 \times L_2 \).

Proof. Suppose there is such a homeomorphism \(h \). Let \(c_1, c_2, \cdots \) denote a sequence of elements of \(L_2 \) which converge to \(a_2 \), and where \(c_{p+1} < c_p \) for \(p = 1, 2, \cdots \). Let \(d_n = h(L_2 \times \{c_n\}) \), \(p = 1, 2, \cdots \) and let \(d_0 = \) image of the nondegenerate elements of \(G \) under \(h \). Since \(d_0 \) is homeomorphic to \(L_1 \), \(d_0 \) contains no interval of the form \(\{a\} \times K \) or \(H \times \{b\} \), so let \(e \) denote a "subarc" of \(d_0 \) containing no points with a coordinate \(= a_2 \) or \(b_2 \).

For each \(n \) let \(G_n \) denote a finite cover of \(e \) by sets of the form \(P = H \times K \), where each of \(H \) and \(K \) is an open subinterval of \(L_2 \), and where \(P \subset L_2 \times L_2 - d_n \). Let \(C_n \) denote the set of all components \(C \) of sets of the type \(e \cap P, P \in G_n \), and let \(K_C \) denote a set composed of the endpoints of \(C \) and one point interior to \(C \). For each \(n \), let \(H_n = \bigcup K_C, C \in C_n \).

In order to show each \(C_n \) is countable it is helpful to use \((1) \) the fact that \(L_2 \times L_2 \) is first countable and \((2) \) the fact that no generalized arc \(A \) has the property that there are mutually exclusive closed sets \(M, N \) and an infinite set \(T \) of mutually exclusive segments of \(A \) such that each \(t \in T \) has one endpoint in \(M \) and the other in \(N \). Finally, to show \(\bigcup H_n \) is dense in \(e \) it
must be remembered that \(e \) contains no "vertical" or "horizontal" intervals. Since \(\bigcup H_n \) is a countable set dense in \(e \), this means \(L_1 \) is homeomorphic to \(L_0 \), a contradiction.

Example 1. There is a space \((X, T)\) satisfying all but condition (4) of the hypothesis of Theorem 1, and such that \(X \) does not have the invariance of domain property.

Proof. Before we describe the example we need to describe some further decompositions of \(L_2 \times L_2 \). Let \(G \) be as in Lemma 2. Let \(H \) be a decomposition of \(L_2 \times L_2 \) so that \(H \) agrees with \(G \) on points \((a, b)\) with \(b < b_2 \), but on \(L_2 \times \{b_2\} \) let \((a, b_2)\) and \((a', b_2)\) belong to the same element of \(H \) if and only if \(a \) and \(a' \) have the same first coordinate. Let \(K \) be defined so that \(g \in K \) if and only if (1) \(g \) is an element of \(H \) containing no point of the form \((a_2, x)\) or \((b_2, x)\), or (2) there is an \(x \) in \(L_2 \) so that \(g \) is the union of the elements of \(H \) containing \((a_2, x)\) and \((b_2, x)\), respectively. The set \(A = (L_2 \times L_2)/K \) is a "generalized annulus" with a metric simple closed curve on one edge \(E_0^0 \) and a "simple closed curve" on the other edge \(E_0^1 \), which is the union of two \(I_2 \) arcs. Given a subset \(M \) of \(A \) let \(P_t(M) \) denote the set of all elements \(k \) of \(M \) so that there is an element \(m \) of \(M \), where \(k \) contains an element of the form \((a, a_2)\) and \(m \) contains an element of the form \((a, x)\). Likewise, define \(P_0(M) \) for points on the other edge. Note that if \(m \) is a subset of the metric edge, and \(N \) is the set of all points \((x, a_2)\) so that \((x, b_2) \in m \in M \), then \(N \) is the union of elements of \(K \).

The space \(X \) will denote the Euclidean plane \(\mathbb{R}^2 \) together with the union of a set of "annuli" \(A_J \), one for each simple closed curve \(J \) in the plane. The metric edge of \(A_J \) is identified with \(J \) under an identification map \(i_J: E_0^0 \rightarrow J \), and if \(J \neq J' \), then \(A_J \cap A_{J'} = J \cap J' \).

The topology \(T \) for \(X \) is generated by neighborhoods of the following type: If \(x \in A_J \) \(- J \), let small open neighborhoods of \(x \) be those in the decomposition space topology on \(A_J \). If \(x \in \mathbb{R}^2 \), a neighborhood \(U \) of \(x \) will be determined by (1) an \(\varepsilon > 0 \), (2) the collection \(V \) of all simple closed curves \(J \) which intersect the spherical open set \(N(x, \varepsilon) \), and (3) a collection \(W \) of connected open subsets \(S_J \), one for each \(L_{2J} \) (Jth copy of \(L_2 \)) such that \(J \in V \) and such that (1) \(S_J \) contains the \(b_{2J} \) endpoint and (2) \(S_J = L_{2J} \) for all but finitely many \(J \)'s in \(W \). \(U \) is \(\{(p): (1) p \in N(x, \varepsilon) \text{ or } (2) \text{ there is a } J \in V, \text{ a point } q \in J \cap N(x, \varepsilon), \text{ and a point } (r, s) \text{ of } L_{2J} \times L_{2J} \text{ such that } (r, s) \in p, s \in S_J, \text{ and } i_J(P_0(p)) = q\} \).

We now see how to define the various collections \(C \) of continua. Let \(a \in U \) open and \(b \in X - U \).

Case 1. Suppose \(a \in E_0^1 \). We think of \(L_2 \) as the Jth copy and of \(K \) as the corresponding decomposition of \(L_2 \times L_2 \). Let \(x_1, x_2 \) be two elements of \(E_0^1 \) distinct from \(a \), suppose \(a_2 < W < b_2 \), and suppose \(B \) is the "arc" from \(x_1 \) to \(x_2 \) on \(E_0^1 \) that contains \(a \). Let \(g \) be the \(\{(P): (1) P = ((x, w)) \text{ and } P_1(P) \in B, \} \).
or (2) \(P = \{(x, y)\} \) and \(a_n \leq y \leq W \) and \(P_1(P) = x_1 \) or \(x_2 \), or (3) \(P = x_1 \) or \(x_2 \).

Continua such as \(g \) (type \(g \)) will be used to construct \(C \), although not all continua in \(C \) will be of this type.

Let \(U_1, U_2, \ldots \) denote a countable base of neighborhoods at \(a \), where \(U_1 \subset U \). Let \(g_0 \) be a continuum of type \(g \) so that \(g \cup \) (the component of \(A_j - g \) that contains \(a \)) \(\subset U_1 \). Let \(g_1 = \{a\} \) and let \(g_{1/2} \) be a type \(g \) continuum so that \(g_{1/2} \subset U_2 \) and also separates \(g_0 \) from \(a \) in \(A_j \). Analogously, we find \(g_{1/4} \) and \(g_{3/4} \) so that \(g_{3/4} \subset U_3 \) and separates \(g_{1/2} \) from \(a \) and where \(g_{1/4} \) separates \(g_0 \) from \(g_{1/2} \). This process is continued to find for each \(r = p/2^n \) \((0 \leq r < 1)\) a continuum of type \(g \), where the separations occur in the same way as on the real line, and where \(g_r \subset U_{q+1} \) for \(r = 2^n - 1/2^n \). If \(0 < t < 1 \) and \(t \neq p/2^n \) then \(g_t \) is the set of all points of \(A_j \) that are separated from \(g_0 \) by a previously defined \(g_s \), for \(s < t \), but are not separated from \(g_0 \) by such a \(g_s \) for \(s > t \). \(C = \{g_t: 1 \geq t > 0\} \).

Case 2. If \(a \in A_j - (E_j^2 \cup E_j^3) \), then a proof analogous to that in Case 1 may be used. The continua will have four "sides" instead of three.

Case 3. Suppose \(a \in \mathbb{R}^2 \) and let \(U_1 \subset U \) be determined by \(e, V, \) and \(W \) as in the definition of this type of neighborhood above. Let \(s_{J_1}, \ldots, s_{J_n} \) be the sets in \(W \) which are different from the corresponding \(L_j \).

For each \(J_p \) \((p = 1, \ldots, n)\) let \(h_p \) denote a set valued map so that if \(t \in [0, e] \) then \(h_p(t) \) is the set of all \(w \) in \(L_{2J_p} \) whose first coordinate is \((1/\epsilon)(e c_p + (d_p - c_p)t)\) \((c_p < d_p)\) and where every point in \(L_{2J_p} \) with first coordinate in \([c_p, d_p]\) is in \(s_{J_p} \).

For \(1 > t > 0 \) let \(g_t = \{P: (i) P \in \mathbb{R}^2 \) and \(|P-a| = et \), or (ii) \(P \in A_j, J \in W, s_{J_p} = L_{2J_p}, \) and \(|P^0_{J_p}(P) - a| = et \), or (iii) \(P \subset J_m \) \((1 \leq m \leq n)\) and \(a \) \((a) |P^0_{J_m}(P) - a| = et \) and \(P = \{(x, y)\} \), where \(y \geq V \in h_m(\epsilon t) \), or (b) there is a component \(C \) of \(J_m \) \(\{Q \in \mathbb{R}^2: |Q - a| = et \} \) such that \(P = \{(x, y)\} \) and \(P^0_{J_m}(P) \subset C \) and \(y \in h_m(\epsilon t) \). The set \(g_0 \) is defined to be the closure of the component of \(X - \bigcup g_t \) \((0 < t < 1)\) that contains \(a \).

To verify that condition (3) of the hypothesis holds, note that an application of Lemma 2 reveals that if \(h: \mathbb{V} \to X \) is a homeomorphism into, where \(U \) is an open subset of a \(A_j - J \) containing a segment \(s \) of \(E_j \), then \(h(s) \) is a segment of some \(E_j \). That \(h(g_t) \) (Case 1) separates \(X \) is a consequence of the work of Slye [6] applied to two sets of the form \(A_j - E_j^3 \) joined along a common edge \(E_j^1 \). In Case 2 the work of Slye may be applied to \(A_j - (E_j^0 \cup E_j^1) \). In Case 3 each \(g_t \) \((0 < t < 1)\) contains a simple closed curve \(J \subset \mathbb{R}^2 \), and \(h(J) \) separates \(X \) into \(A_j - J \) and \(X - A_j \).

Let \(W = (1, 1) \times (1, 1) \subset \mathbb{R}^2 \) be an open square disk and let \(Q \) denote the set of all closed curves in \(R^2 \) which intersect \(W \). Let \(U = \{P \in X: (1) P \in W \) or (2) \(P \in A_j, J \subset Q \) and \(P^0_{J}(P) \subset W \} \). For each positive integer \(n \) let \(J_n \) be the rectangular simple closed curve with vertices at \((n, 0), (n, 0), (n, n) \) and \((n, n)\), respectively, and let \(C_n \) denote the set of all points \(P \).
of A_f so that $P^a_\sigma(P) \in W$. We define an into homeomorphism $h: U \to U$ which is the identity on $U \setminus \bigcup C_n$ and such that $h(C_n) = C_{n+1}$. But $U \setminus (C_1 - J_1)$ is not open, so X does not have the invariance of domain property.

REFERENCES

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LOUISIANA 70118

Current address: Department of Mathematics, Texas A & M University, College Station, Texas 77843