Wild cells in $E^{4}$ in which every arc is tame
HTML articles powered by AMS MathViewer
- by Robert J. Daverman
- Proc. Amer. Math. Soc. 34 (1972), 270-272
- DOI: https://doi.org/10.1090/S0002-9939-1972-0295312-1
- PDF | Request permission
Abstract:
Seebeck has proved that if an m-cell C in Euclidean n-space ${E^n}$ factors k-times, $m \leqq n - 2$, and $n \geqq 5$, then every embedding of a compact k-dimensional polyhedron in C is tame relative to ${E^n}$. We prove the analogous result for $n = 4$ and $m \leqq 3$.References
- R. H. Bing, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33β45. MR 160194
- J. L. Bryant, On embeddings with locally nice cross-sections, Trans. Amer. Math. Soc. 155 (1971), 327β332. MR 276983, DOI 10.1090/S0002-9947-1971-0276983-6 J. W. Cannon, Characterizations of tame subsets of 2-spheres in three-dimensional space, Notices Amer. Math. Soc. 17 (1970), 469. Abstract #70T-G43.
- R. J. Daverman and W. T. Eaton, An equivalence for the embeddings of cells in a $3$-manifold, Trans. Amer. Math. Soc. 145 (1969), 369β381. MR 250280, DOI 10.1090/S0002-9947-1969-0250280-8
- Charles L. Seebeck III, Tame arcs on wild cells, Proc. Amer. Math. Soc. 29 (1971), 197β201. MR 281177, DOI 10.1090/S0002-9939-1971-0281177-X
- R. B. Sher, Tame polyhedra in wild cells and spheres, Proc. Amer. Math. Soc. 30 (1971), 169β174. MR 281178, DOI 10.1090/S0002-9939-1971-0281178-1
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 270-272
- MSC: Primary 57A15
- DOI: https://doi.org/10.1090/S0002-9939-1972-0295312-1
- MathSciNet review: 0295312