## Wild cells in $E^{4}$ in which every arc is tame

HTML articles powered by AMS MathViewer

- by Robert J. Daverman PDF
- Proc. Amer. Math. Soc.
**34**(1972), 270-272 Request permission

## Abstract:

Seebeck has proved that if an*m*-cell

*C*in Euclidean

*n*-space ${E^n}$ factors

*k*-times, $m \leqq n - 2$, and $n \geqq 5$, then every embedding of a compact

*k*-dimensional polyhedron in

*C*is tame relative to ${E^n}$. We prove the analogous result for $n = 4$ and $m \leqq 3$.

## References

- R. H. Bing,
*Pushing a 2-sphere into its complement*, Michigan Math. J.**11**(1964), 33β45. MR**160194** - J. L. Bryant,
*On embeddings with locally nice cross-sections*, Trans. Amer. Math. Soc.**155**(1971), 327β332. MR**276983**, DOI 10.1090/S0002-9947-1971-0276983-6
J. W. Cannon, - R. J. Daverman and W. T. Eaton,
*An equivalence for the embeddings of cells in a $3$-manifold*, Trans. Amer. Math. Soc.**145**(1969), 369β381. MR**250280**, DOI 10.1090/S0002-9947-1969-0250280-8 - Charles L. Seebeck III,
*Tame arcs on wild cells*, Proc. Amer. Math. Soc.**29**(1971), 197β201. MR**281177**, DOI 10.1090/S0002-9939-1971-0281177-X - R. B. Sher,
*Tame polyhedra in wild cells and spheres*, Proc. Amer. Math. Soc.**30**(1971), 169β174. MR**281178**, DOI 10.1090/S0002-9939-1971-0281178-1

*Characterizations of tame subsets of*2-

*spheres in three-dimensional space*, Notices Amer. Math. Soc.

**17**(1970), 469. Abstract #70T-G43.

## Additional Information

- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**34**(1972), 270-272 - MSC: Primary 57A15
- DOI: https://doi.org/10.1090/S0002-9939-1972-0295312-1
- MathSciNet review: 0295312