Derivation modules of free joins and $m$-adic completions of algebras
HTML articles powered by AMS MathViewer
- by I. Y. Chung
- Proc. Amer. Math. Soc. 34 (1972), 49-56
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296061-6
- PDF | Request permission
Abstract:
A free commutative join of subalgebras corresponds to a direct sum of submodules in a universal derivation module. In particular, indeterminates of a polynomial ring correspond to elements of a linearly independent set in a universal derivation module. As an application, a simple proof of the uniqueness of cardinalities of indeterminates of a polynomial ring can be obtained by using that of linear bases of a free module over a commutative ring. Similar observations are made for $\mathfrak {m}$-adic completions of algebras and their derivation modules. Also, the module of linear differential forms of an $\mathfrak {m}$-adic completion of an algebra is studied.References
- Robert Berger, Über verschiedene Differentenbegriffe, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1960/61 (1960/1961), 1–44 (German). MR 0131443 N. Bourbaki, Eléments de mathématique. I: Les structures fondamentales de l’analyse. Fasc. XI. Livre II: Algèbre. Chap. 4: Polynomes et fractions rationnelles. Chap. 5: Corps commutatifs, Actualités Sci. Indust., no. 1102, Hermann, Paris, 1959. MR 30 #4751. —, Eléments de mathématique. Fasc. XXVII. Algèbre commutative. Chap. 3: Graduations, filtrations et topologies. Chap. 4: Idéaux premiers associés et décomposition primaire, Actualités Sci. Indust., no. 1293, Hermann, Paris, 1961. MR 30 #2027.
- Claude Chevalley, Fundamental concepts of algebra, Academic Press, Inc., New York, 1956. MR 0082459
- I. Y. Chung, On free joins of algebras and Kähler’s differential forms, Abh. Math. Sem. Univ. Hamburg 35 (1970), 92–106. MR 281711, DOI 10.1007/BF02992479
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234 Krishna Tewari, Complexes over an algebra, Ph.D. Thesis, McMaster University, Hamilton, Ontario, 1964.
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 49-56
- MSC: Primary 13B10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296061-6
- MathSciNet review: 0296061