On finite invariant measures for sets of Markov operators
HTML articles powered by AMS MathViewer
- by S. Horowitz
- Proc. Amer. Math. Soc. 34 (1972), 110-114
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296258-5
- PDF | Request permission
Abstract:
A. Brunel [1] proved that a Markovian operator P has an invariant measure if and only if each convex combination of iterates $\sum \nolimits _{n = 0}^\infty {{\alpha _n}{P^n}}$ is conservative. In the present paper this result is generalized for any commutative semigroup of Markovian operators: Let II be a semigroup; there exists a common invariant measure for II if and only if each convex combination $\sum \nolimits _{n = 1}^\infty {{\alpha _n}{P_n}}$ where $\{ {P_n}\} \subset \Pi$, is conservative.References
- A. Brunel, New conditions for existence of invariant measures in ergodic theory. , Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970) Springer, Berlin, 1970, pp. 7–17. MR 0268355 —, Thesis, University of Paris, Paris.
- Shaul R. Foguel, The ergodic theory of Markov processes, Van Nostrand Mathematical Studies, No. 21, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0261686
- Michael Lin, Semi-groups of Markov operators, Boll. Un. Mat. Ital. (4) 6 (1972), 20–44 (English, with Italian summary). MR 0320275
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 110-114
- MSC: Primary 28A70; Secondary 47D99, 60J99
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296258-5
- MathSciNet review: 0296258