The Euclidean symmetric isosceles queasy four-point properties
HTML articles powered by AMS MathViewer
- by J. E. Valentine and S. G. Wayment PDF
- Proc. Amer. Math. Soc. 34 (1972), 233-238 Request permission
Abstract:
The purpose of this paper is to show that a complete, convex, externally convex metric space is generalized euclidean if and only if it has the euclidean symmetric isosceles queasy four-point property or the euclidean external isosceles queasy four-point property.References
- Leonard M. Blumenthal, Theory and applications of distance geometry, Oxford, at the Clarendon Press, 1953. MR 0054981
- Leonard M. Blumenthal, An extension of a theorem of Jordan and von Neumann, Pacific J. Math. 5 (1955), 161–167. MR 70155
- E. Z. Andalafte and L. M. Blumenthal, Metric characterizations of Banach and Euclidean spaces, Fund. Math. 55 (1964), 23–55. MR 165338, DOI 10.4064/fm-55-1-23-55
- Mahlon M. Day, Some characterizations of inner-product spaces, Trans. Amer. Math. Soc. 62 (1947), 320–337. MR 22312, DOI 10.1090/S0002-9947-1947-0022312-9
- Mahlon M. Day, On criteria of Kasahara and Blumenthal for inner-product spaces, Proc. Amer. Math. Soc. 10 (1959), 92–100. MR 106407, DOI 10.1090/S0002-9939-1959-0106407-0
- Maurice Fréchet, Sur la définition axiomatique d’une classe d’espaces vectoriels distanciés applicables vectoriellement sur l’espace de Hilbert, Ann. of Math. (2) 36 (1935), no. 3, 705–718 (French). MR 1503246, DOI 10.2307/1968652
- Raymond W. Freese, Criteria for inner product spaces, Proc. Amer. Math. Soc. 19 (1968), 953–958. MR 227868, DOI 10.1090/S0002-9939-1968-0227868-8
- P. Jordan and J. Von Neumann, On inner products in linear, metric spaces, Ann. of Math. (2) 36 (1935), no. 3, 719–723. MR 1503247, DOI 10.2307/1968653
- Joseph E. Valentine, On criteria of Blumenthal for inner-product spaces, Fund. Math. 72 (1971), no. 3, 265–269. MR 293502, DOI 10.4064/fm-72-3-265-269
- W. A. Wilson, A Relation Between Metric and Euclidean Spaces, Amer. J. Math. 54 (1932), no. 3, 505–517. MR 1506915, DOI 10.2307/2370894
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 233-238
- MSC: Primary 52A50
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296823-5
- MathSciNet review: 0296823