On the conjugating representation of a finite group
HTML articles powered by AMS MathViewer
- by K. L. Fields
- Proc. Amer. Math. Soc. 34 (1972), 35-37
- DOI: https://doi.org/10.1090/S0002-9939-1972-0297889-9
- PDF | Request permission
Abstract:
It is shown that the sum of the elements of the character table of a finite group is at least # conjugacy classes+ (# involutions-# classes of involutions)+(# real classes-# strongly real classes). Equality sometimes holds, e.g. for ${A_5}$. Our investigations also demonstrate the appearance of a nontrivial real valued character (whose degree we can estimate) in the decomposition of the conjugating representation of a finite group possessing noncentral involutions.References
- Richard Brauer and K. A. Fowler, On groups of even order, Ann. of Math. (2) 62 (1955), 565–583. MR 74414, DOI 10.2307/1970080 G. Frobenius and I. Schur, Über die reelen Darstellungen der endlichen Gruppen, S.-B. Preuss. Akad. Wiss. 1906, 186-208.
- Louis Solomon, On the sum of the elements in the character table of a finite group, Proc. Amer. Math. Soc. 12 (1961), 962–963. MR 132783, DOI 10.1090/S0002-9939-1961-0132783-8
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 35-37
- MSC: Primary 20C15
- DOI: https://doi.org/10.1090/S0002-9939-1972-0297889-9
- MathSciNet review: 0297889