The dimension of the convex kernel and points of local nonconvexity
HTML articles powered by AMS MathViewer
- by Nick M. Stavrakas PDF
- Proc. Amer. Math. Soc. 34 (1972), 222-224 Request permission
Abstract:
Let S be a compact connected subset of ${R^d}$. A necessary and sufficient condition is given to ensure that the dimension of the convex kernel of S is greater than or equal to k, $0 \leqq k \leqq d$. This condition involves a visibility constraint on the points of local nonconvexity of S. As consequences, we obtain new characterizations of the convex kernel of S and the nth-order convex kernel of S.References
- N. E. Foland and J. M. Marr, Sets with zero-dimensional kernels, Pacific J. Math. 19 (1966), 429–432. MR 205149
- John W. Kenelly, W. R. Hare Jr., B. D. Evans, and W. H. Ludescher, Convex components, extreme points, and the convex kernel, Proc. Amer. Math. Soc. 21 (1969), 83–87. MR 238183, DOI 10.1090/S0002-9939-1969-0238183-1
- Arthur G. Sparks, Characterizations of the generalized convex kernel, Proc. Amer. Math. Soc. 27 (1971), 563–565. MR 279692, DOI 10.1090/S0002-9939-1971-0279692-8 F. A. Toranzos, The dimension of the kernel of a starshaped set, Notices Amer. Math. Soc. 14 (1967), 832. Abstract #67T-588.
- F. A. Valentine, Local convexity and $L_{n}$ sets, Proc. Amer. Math. Soc. 16 (1965), 1305–1310. MR 185510, DOI 10.1090/S0002-9939-1965-0185510-6
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 222-224
- MSC: Primary 52A20
- DOI: https://doi.org/10.1090/S0002-9939-1972-0298549-0
- MathSciNet review: 0298549