The dimension of the convex kernel and points of local nonconvexity
Author:
Nick M. Stavrakas
Journal:
Proc. Amer. Math. Soc. 34 (1972), 222-224
MSC:
Primary 52A20
DOI:
https://doi.org/10.1090/S0002-9939-1972-0298549-0
MathSciNet review:
0298549
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let S be a compact connected subset of ${R^d}$. A necessary and sufficient condition is given to ensure that the dimension of the convex kernel of S is greater than or equal to k, $0 \leqq k \leqq d$. This condition involves a visibility constraint on the points of local nonconvexity of S. As consequences, we obtain new characterizations of the convex kernel of S and the nth-order convex kernel of S.
- N. E. Foland and J. M. Marr, Sets with zero-dimensional kernels, Pacific J. Math. 19 (1966), 429–432. MR 205149
- John W. Kenelly, W. R. Hare Jr., B. D. Evans, and W. H. Ludescher, Convex components, extreme points, and the convex kernel, Proc. Amer. Math. Soc. 21 (1969), 83–87. MR 238183, DOI https://doi.org/10.1090/S0002-9939-1969-0238183-1
- Arthur G. Sparks, Characterizations of the generalized convex kernel, Proc. Amer. Math. Soc. 27 (1971), 563–565. MR 279692, DOI https://doi.org/10.1090/S0002-9939-1971-0279692-8 F. A. Toranzos, The dimension of the kernel of a starshaped set, Notices Amer. Math. Soc. 14 (1967), 832. Abstract #67T-588.
- F. A. Valentine, Local convexity and $L_{n}$ sets, Proc. Amer. Math. Soc. 16 (1965), 1305–1310. MR 185510, DOI https://doi.org/10.1090/S0002-9939-1965-0185510-6
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52A20
Retrieve articles in all journals with MSC: 52A20
Additional Information
Article copyright:
© Copyright 1972
American Mathematical Society