Arithmetric structure and lacunary Fourier series
HTML articles powered by AMS MathViewer
- by George Benke
- Proc. Amer. Math. Soc. 34 (1972), 128-132
- DOI: https://doi.org/10.1090/S0002-9939-1972-0301456-8
- PDF | Request permission
Abstract:
We prove a theorem concerning the arithmetic structure of $\Lambda (p)$ sets. This generalizes a result of Rudin and yields a new characterization of Sidon sets for certain Abelian groups.References
- Alfred Horn, A characterization of unions of linearly independent sets, J. London Math. Soc. 30 (1955), 494–496. MR 71487, DOI 10.1112/jlms/s1-30.4.494
- Jean-Pierre Kahane, Some random series of functions, D. C. Heath and Company Raytheon Education Company, Lexington, Mass., 1968. MR 0254888 M. P. Malliavin-Brameret and P. Malliavin, Caractérisation arithmétique d’une classe d’ensembles de Helson, C. R. Acad. Sci. Paris 264 (1967), 192-193.
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Walter Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203–227. MR 0116177, DOI 10.1512/iumj.1960.9.59013
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 128-132
- MSC: Primary 43A45
- DOI: https://doi.org/10.1090/S0002-9939-1972-0301456-8
- MathSciNet review: 0301456