On the relative group cohomology ring
HTML articles powered by AMS MathViewer
- by G. R. Chapman PDF
- Proc. Amer. Math. Soc. 34 (1972), 43-48 Request permission
Abstract:
The product structure on the Hochschild-Serre spectral sequence generalizes to the spectral sequences of Butler-Horrocks. It is shown that Evensβ proof of the finite generation of the integral cohomology ring of a finite group does not generalize to the relative cohomology groups of Adamson.References
- Iain T. Adamson, Cohomology theory for non-normal subgroups and non-normal fields, Proc. Glasgow Math. Assoc. 2 (1954), 66β76. MR 65546
- M. C. R. Butler and G. Horrocks, Classes of extensions and resolutions, Philos. Trans. Roy. Soc. London Ser. A 254 (1961/62), 155β222. MR 188267, DOI 10.1098/rsta.1961.0014
- Leonard Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224β239. MR 137742, DOI 10.1090/S0002-9947-1961-0137742-1
- G. Hochschild, Relative homological algebra, Trans. Amer. Math. Soc. 82 (1956), 246β269. MR 80654, DOI 10.1090/S0002-9947-1956-0080654-0
- G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110β134. MR 52438, DOI 10.1090/S0002-9947-1953-0052438-8 S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 43-48
- MSC: Primary 18H15
- DOI: https://doi.org/10.1090/S0002-9939-1972-0302743-X
- MathSciNet review: 0302743