Subnormality and quasinormality of Toeplitz operators
HTML articles powered by AMS MathViewer
- by Takashi Itô and Tin Kin Wong PDF
- Proc. Amer. Math. Soc. 34 (1972), 157-164 Request permission
Abstract:
Halmos asks whether every subnormal Toeplitz operator on ${H^2}$ is either analytic or normal. It is shown that for a certain class of Toeplitz operators, the subnormality implies either analyticity or normality.References
- Arlen Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723–728. MR 59483, DOI 10.1090/S0002-9939-1953-0059483-2
- Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89–102. MR 160136, DOI 10.1007/978-1-4613-8208-9_{1}9
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Paul R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102–112. MR 152896, DOI 10.1515/crll.1961.208.102
- Henry Helson, Lectures on invariant subspaces, Academic Press, New York-London, 1964. MR 0171178
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 157-164
- MSC: Primary 47B35
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303334-7
- MathSciNet review: 0303334