On certain fiberings of $M^{2}\times S^{1}$
HTML articles powered by AMS MathViewer
- by Wolfgang Heil PDF
- Proc. Amer. Math. Soc. 34 (1972), 280-286 Request permission
Abstract:
Using a theorem of Stallings it is shown that the product of ${S^1}$ and a surface of genus $g > 1$ admits for every integer $n \geqq 0$ a fibering over ${S^1}$ with a surface of genus $n(g - 1) + g$ as fiber. Conversely, these are all possible such fibrations (up to equivalence). Let N be a Seifert fiber space which is locally trivial fibered over ${S^1}$ with fiber a surface. It is shown that any two such fiberings of N over ${S^1}$ are equivalent if the fibers are homeomorphic.References
- William Jaco, Surfaces embedded in $M^{2}\times S^{1}$, Canadian J. Math. 22 (1970), 553–568. MR 267596, DOI 10.4153/CJM-1970-063-x
- Lee Neuwirth, A topological classification of certain $3$-manifolds, Bull. Amer. Math. Soc. 69 (1963), 372–375. MR 146809, DOI 10.1090/S0002-9904-1963-10929-5 J. Nielsen, Die Struktur periodischer Transformationen von Flächen, Math.-Fys. Medd. Kgl. Danske Vid. Selsk. 1937, 1-75.
- Jakob Nielsen, Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1943), 23–115 (German). MR 13306, DOI 10.1007/BF02404101
- P. Orlik, E. Vogt, and H. Zieschang, Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology 6 (1967), 49–64 (German). MR 212831, DOI 10.1016/0040-9383(67)90013-4
- H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933), no. 1, 147–238 (German). MR 1555366, DOI 10.1007/BF02398271
- John Stallings, On fibering certain $3$-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95–100. MR 0158375
- Jeffrey L. Tollefson, $3$-manifolds fibering over $S^{1}$ with nonunique connected fiber, Proc. Amer. Math. Soc. 21 (1969), 79–80. MR 236945, DOI 10.1090/S0002-9939-1969-0236945-8
- Friedhelm Waldhausen, Gruppen mit Zentrum und $3$-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505–517 (German). MR 236930, DOI 10.1016/0040-9383(67)90008-0
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 280-286
- MSC: Primary 55F05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0303538-3
- MathSciNet review: 0303538