The Brauer group of a compact Hausdorff space and $n$-homogeneous $C^{\ast }$-algebras
HTML articles powered by AMS MathViewer
- by Roger Howe
- Proc. Amer. Math. Soc. 34 (1972), 209-214
- DOI: https://doi.org/10.1090/S0002-9939-1972-0305088-7
- PDF | Request permission
Abstract:
The structure of all n-homogeneous ${C^\ast }$-algebras with a given compact Hausdorff space X as maximal ideal space is looked at from a cohomological standpoint. Such algebras are matrix algebra bundles over X, and by means of fibrewise tensor products, a group, $B(X)$, analogous to the Brauer group of field theory, is constructed. A partial cohomological description of this group is given. Projective representations of finite groups are used to provide examples where $B(X)$ is precisely computable and non-trivial.References
- Jacques Dixmier and Adrien Douady, Champs continus dâespaces hilbertiens et de $C^{\ast }$-algĂšbres, Bull. Soc. Math. France 91 (1963), 227â284 (French). MR 163182
- Jacques Dixmier, Les $C^{\ast }$-algĂšbres et leurs reprĂ©sentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Ăditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233â280. MR 164248, DOI 10.1007/BF02545788
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 209-214
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0305088-7
- MathSciNet review: 0305088