Embedding nuclear spaces in products of an arbitrary Banach space
HTML articles powered by AMS MathViewer
- by Stephen A. Saxon PDF
- Proc. Amer. Math. Soc. 34 (1972), 138-140 Request permission
Abstract:
It is proved that if E is an arbitrary nuclear space and F is an arbitrary infinite-dimensional Banach space, then there exists a fundamental (basic) system $\mathcal {V}$ of balanced, convex neighborhoods of zero for E such that, for each V in $\mathcal {V}$, the normed space ${E_V}$ is isomorphic to a subspace of F. The result for $F = {l_p}\;(1 \leqq p \leqq \infty )$ was proved by A. Grothendieck.References
- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164. MR 115069, DOI 10.4064/sm-17-2-151-164
- Joseph Diestel, Sidney A. Morris, and Stephen A. Saxon, Varieties of locally convex topological vector spaces, Bull. Amer. Math. Soc. 77 (1971), 799–803. MR 282188, DOI 10.1090/S0002-9904-1971-12811-2
- J. Diestel, Sidney A. Morris, and Stephen A. Saxon, Varieties of linear topological spaces, Trans. Amer. Math. Soc. 172 (1972), 207–230. MR 316992, DOI 10.1090/S0002-9947-1972-0316992-2
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- Takako K\B{o}mura and Yukio K\B{o}mura, Über die Einbettung der nuklearen Räume in $(s)^{A}$, Math. Ann. 162 (1965/66), 284–288 (German). MR 188754, DOI 10.1007/BF01360917
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 138-140
- MSC: Primary 46A05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0318823-9
- MathSciNet review: 0318823