Maximal operators and capacity
HTML articles powered by AMS MathViewer
- by David R. Adams PDF
- Proc. Amer. Math. Soc. 34 (1972), 152-156 Request permission
Abstract:
It is shown that many maximal functions defined on the ${L_p}$ spaces are bounded operators on ${L_p}$ if and only if they satisfy a capacitary weak type inequality.References
- David R. Adams and Norman G. Meyers, Bessel potentials. Inclusion relations among classes of exceptional sets, Bull. Amer. Math. Soc. 77 (1971), 968–970. MR 284607, DOI 10.1090/S0002-9904-1971-12821-5 A.-P. Calderón, Lebesgue spaces of differentiate functions and distributions, Proc. Sympos. Pure Math., vol. 4, Amer. Math. Soc., Providence, R.I., 1961, pp. 33-49. MR 26 #603.
- Lennart Carleson, Maximal functions and capacities, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 1, 59–64. MR 185132
- Charles Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc. 77 (1971), 744–745. MR 435724, DOI 10.1090/S0002-9904-1971-12793-3
- Bent Fuglede, Le théorème du minimax et la théorie fine du potentiel, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 1, 65–88 (French). MR 190368
- Richard A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967) Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 235–255. MR 0238019
- Norman G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255–292 (1971). MR 277741, DOI 10.7146/math.scand.a-10981
- C. Preston, Some inequalities involving the Hardy-Littlewood maximal function in a theory of capacities, Functional analysis (Proc. Sympos., Monterey, Calif., 1969) Academic Press, New York, 1970, pp. 21–31. MR 0294675
- Per Sjölin, Convergence almost everywhere of certain singular integrals and multiple Fourier series, Ark. Mat. 9 (1971), 65–90. MR 336222, DOI 10.1007/BF02383638
- Antoni Zygmund, Trigonometrical series, Chelsea Publishing Co., New York, 1952. 2nd ed. MR 0076084
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 152-156
- MSC: Primary 42A92; Secondary 31B15
- DOI: https://doi.org/10.1090/S0002-9939-1972-0350314-1
- MathSciNet review: 0350314