ERRATA TO VOLUME 29

1. Add to the end of the article "with lim u=1".
2. p. 360, lines 15, 16. This is a special case of Theorem 9.

Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015

In Theorem 4 of this paper it is stated that the set of all operators with ascent and descent 0 or 1 is uniformly closed in B(H). This is not true as can be seen by the following example [P. R. Halmos, *A Hilbert space problem book*, Problem 85]. If for each k=1, 2, ..., A_k is the weighted shift on the Hilbert space of two-way square-summable sequences, with sequence of weights (..., 1, 1, 1/k, 1, 1, ...), then \(\|A_k - A_\infty\| \to 0 \) where \(A_\infty \) has its sequence of weights (..., 1, 1, 0, 1, 1, ...). Each \(A_k \), being invertible, is of ascent and descent 0 or 1, but \(A_\infty \) is not of ascent 0 or 1, since \(A_\infty^2 e_{-1} = A_\infty (1e_0) = 0 \) whereas \(A_\infty^2 e_{-1} = e_0 \neq 0 \). In the proof of Theorem 4 we argue that since \(R(T_n^*) = R(T_n^{*2}) \), \(\lim_{n \to \infty} (x, T_n^* y) = \lim_{n \to \infty} (x, T_n^{*2} z) = 0 \). This argument breaks down since the vector \(z \) is dependent on \(n \).

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India

© American Mathematical Society 1972