Pólya peaks and the oscillation of positive functions
HTML articles powered by AMS MathViewer
- by David Drasin and Daniel F. Shea
- Proc. Amer. Math. Soc. 34 (1972), 403-411
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294580-X
- PDF | Request permission
Abstract:
A new proof is given of the existence of Pólya peaks of an (increasing) function $g(t)$. This approach yields several applications, including a characterization of those p for which g can have peaks of order p.References
- David Drasin, Tauberian theorems and slowly varying functions, Trans. Amer. Math. Soc. 133 (1968), 333–356. MR 226017, DOI 10.1090/S0002-9947-1968-0226017-4
- David Drasin and Daniel F. Shea, Convolution inequalities, regular variation and exceptional sets, J. Analyse Math. 29 (1976), 232–293. MR 477619, DOI 10.1007/BF02789980
- Albert Edrei, The deficiencies of meromorphic functions of finite lower order, Duke Math. J. 31 (1964), 1–21. MR 158079
- Albert Edrei, Sums of deficiencies of meromorphic functions, J. Analyse Math. 14 (1965), 79–107. MR 180678, DOI 10.1007/BF02806380
- Albert Edrei, A local form of the Phragmén-Lindelöf indicator, Mathematika 17 (1970), 149–172. MR 267098, DOI 10.1112/S0025579300002825
- Albert Edrei and Wolfgang H. J. Fuchs, On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc. 93 (1959), 292–328. MR 109887, DOI 10.1090/S0002-9947-1959-0109887-4
- Albert Edrei and Wolfgang H. J. Fuchs, Valeurs déficientes et valeurs asymptotiques des fonctions méromorphes, Comment. Math. Helv. 33 (1959), 258–295 (French). MR 123716, DOI 10.1007/BF02565920
- Albert Edrei and Wolfgang H. J. Fuchs, The deficiencies of meromorphic functions of order less than one, Duke Math. J. 27 (1960), 233–249. MR 123717
- William Feller, On regular variation and local limit theorems, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 373–388. MR 0219117
- Wolfgang H. J. Fuchs, Théorie de l’approximation des fonctions d’une variable complexe, Séminaire de Mathématiques Supérieures, No. 26 (Été, vol. 1967, Les Presses de l’Université de Montréal, Montreal, Que., 1968 (French). MR 0261010
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- Bo Kjellberg, On the minimum modulus of entire functions of lower order less than one, Math. Scand. 8 (1960), 189–197. MR 125967, DOI 10.7146/math.scand.a-10608
- J. Korevaar, T. van Aardenne-Ehrenfest, and N. G. de Bruijn, A note on slowly oscillating functions, Nieuw Arch. Wiskunde (2) 23 (1949), 77–86. MR 0027812
- Georg Pólya, Bemerkungen über unendliche Folgen und ganze Funktionen, Math. Ann. 88 (1923), no. 3-4, 169–183 (German). MR 1512126, DOI 10.1007/BF01579177
- D. F. Shea, On the Valiron deficiencies of meromorphic functions of finite order, Trans. Amer. Math. Soc. 124 (1966), 201–227. MR 200458, DOI 10.1090/S0002-9947-1966-0200458-1
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 403-411
- MSC: Primary 26A48
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294580-X
- MathSciNet review: 0294580