On the accumulation of the zeros of a Blaschke product at a boundary point
HTML articles powered by AMS MathViewer
- by David Protas
- Proc. Amer. Math. Soc. 34 (1972), 489-496
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294645-2
- PDF | Request permission
Abstract:
Let B be a Blaschke product with zeros $\{ {a_n}\}$. The series $\sum {(1 - |{a_n}{|^2})} /|1 - \bar \zeta {a_n}{|^\gamma }$, where $\gamma \geqq 1$ and $|\zeta | = 1$, has been used by P. R. Ahern, D. N. Clark, G. T. Cargo, and others in the study of the boundary behavior of B and various associated functions. In this paper the convergence of this series is shown to be equivalent to a condition on a reproducing kernel for a subspace of the Hardy space ${H^2}$. Some related conditions and corollaries are also given.References
- P. R. Ahern and D. N. Clark, Radial limits and invariant subspaces, Amer. J. Math. 92 (1970), 332โ342. MR 262511, DOI 10.2307/2373326
- P. R. Ahern and D. N. Clark, On functions orthogonal to invariant subspaces, Acta Math. 124 (1970), 191โ204. MR 264385, DOI 10.1007/BF02394571
- P. R. Ahern and D. N. Clark, Radial $n\textrm {th}$ derivatives of Blaschke products, Math. Scand. 28 (1971), 189โ201. MR 318495, DOI 10.7146/math.scand.a-11015
- G. T. Cargo, Angular and tangential limits of Blaschke products and their successive derivatives, Canadian J. Math. 14 (1962), 334โ348. MR 136743, DOI 10.4153/CJM-1962-026-2
- G. T. Cargo, The segmental variation of Blaschke products, Duke Math. J. 30 (1963), 143โ149. MR 145081 P. Dienes, The Taylor series, Clarendon Press, Oxford, 1931.
- C. N. Linden and H. Somadasa, On tangential limits of Blaschke products, Arch. Math. (Basel) 18 (1967), 416โ424. MR 233985, DOI 10.1007/BF01898836
- David Protas, Tangential limits of functions orthogonal to invariant subspaces, Trans. Amer. Math. Soc. 166 (1972), 163โ172. MR 293100, DOI 10.1090/S0002-9947-1972-0293100-8
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 489-496
- MSC: Primary 30A72
- DOI: https://doi.org/10.1090/S0002-9939-1972-0294645-2
- MathSciNet review: 0294645