The space of retractions of a $2$-manifold
HTML articles powered by AMS MathViewer
- by Neal R. Wagner
- Proc. Amer. Math. Soc. 34 (1972), 609-614
- DOI: https://doi.org/10.1090/S0002-9939-1972-0295282-6
- PDF | Request permission
Abstract:
Let ${M^2}$ be a 2-manifold and let $\Lambda$ be the embedding of ${M^2}$ into its space of retractions which maps each point to the constant retraction to that point. Denote by $\mathcal {L}({M^2})$ the component containing the image of $\Lambda$. The embedding $\Lambda$, with range restricted to $\mathcal {L}({M^2})$, is shown to be a weak homotopy equivalence if ${M^2}$ is compact, or if ${M^2}$ is complete and the metric topology is used.References
- Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911
- R. Engelking, Outline of general topology, North-Holland Publishing Co., Amsterdam; PWN—Polish Scientific Publishers, Warsaw; Interscience Publishers Division John Wiley & Sons, Inc., New York, 1968. Translated from the Polish by K. Sieklucki. MR 0230273
- Mary-Elizabeth Hamstrom and Eldon Dyer, Regular mappings and the space of homeomorphisms on a 2-manifold, Duke Math. J. 25 (1958), 521–531. MR 96202
- R. Luke and W. K. Mason, The space of homeomorphisms on a compact two-manifold is an absolute neighborhood retract, Trans. Amer. Math. Soc. 164 (1972), 275–285. MR 301693, DOI 10.1090/S0002-9947-1972-0301693-7
- Ernest Michael, Continuous selections. II, Ann. of Math. (2) 64 (1956), 562–580. MR 80909, DOI 10.2307/1969603
- Rolf Nevanlinna, Uniformisierung, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXIV, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). MR 0057335
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Neal R. Wagner, The space of retractions of the $2$-sphere and the annulus, Trans. Amer. Math. Soc. 158 (1971), 319–329. MR 279763, DOI 10.1090/S0002-9947-1971-0279763-0
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 609-614
- MSC: Primary 54C15
- DOI: https://doi.org/10.1090/S0002-9939-1972-0295282-6
- MathSciNet review: 0295282