New methods in coincidence theory
HTML articles powered by AMS MathViewer
- by Kalyan K. Mukherjea
- Proc. Amer. Math. Soc. 34 (1972), 615-620
- DOI: https://doi.org/10.1090/S0002-9939-1972-0295343-1
- PDF | Request permission
Abstract:
Cobordism theory is used to obtain a new type of result concerning the coincidence of maps between compact manifolds.References
- M. F. Atiyah, $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes by D. W. Anderson. MR 0224083
- P. E. Conner and E. E. Floyd, The relation of cobordism to $K$-theories, Lecture Notes in Mathematics, No. 28, Springer-Verlag, Berlin-New York, 1966. MR 0216511
- Eldon Dyer, Cohomology theories, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0268883
- Tsunekazu Kambe, The structure of $K_{\Lambda }$-rings of the lens space and their applications, J. Math. Soc. Japan 18 (1966), 135–146. MR 198491, DOI 10.2969/jmsj/01820135
- Jack Johnson Morava, Fredholm maps and Gysin homomorphisms, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 135–156. MR 0268920
- Daniel Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29–56 (1971). MR 290382, DOI 10.1016/0001-8708(71)90041-7
- Norman E. Steenrod, The work and influence of Professor S. Lefschetz in algebraic topology, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 24–43. MR 0086294
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 615-620
- MSC: Primary 55C20
- DOI: https://doi.org/10.1090/S0002-9939-1972-0295343-1
- MathSciNet review: 0295343