On a subclass of square integrable martingales
HTML articles powered by AMS MathViewer
- by Dean Isaacson
- Proc. Amer. Math. Soc. 34 (1972), 521-526
- DOI: https://doi.org/10.1090/S0002-9939-1972-0295432-1
- PDF | Request permission
Abstract:
Let $\mathcal {M}_2^ \ast$ denote the class of continuous, nowhere constant, square integrable martingales, $M(t) = X({\langle M\rangle _t})$, for which ${\langle M\rangle _t}$ is a time change on the $\sigma$-fields generated by the Brownian motion $X(t)$. It is shown that if $M(t) \in \mathcal {M}_2^ \ast$, then the family of $\sigma$-fields generated by $M(t)$ is a right continuous family. If $M(t) \in \mathcal {M}_2^ \ast$ and if $\sigma \{ M(s):s \leqq t\} = \sigma \{ X(s):s \leqq t\}$ for some Brownian motion $X(t)$, then $M(t) = \smallint _0^t {\Phi (s)dX(s)}$ and $X(t) = \smallint _0^t {(1/\Phi (s))dM(s)}$ for some process $\Phi (s)$ with $\Phi (s) \ne 0$ a.e. $dt \times dP$.References
- R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
- K. È. Dambis, On decomposition of continuous submartingales, Teor. Verojatnost. i Primenen. 10 (1965), 438–448 (Russian, with English summary). MR 0202179
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- Lester E. Dubins and Gideon Schwarz, On continuous martingales, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 913–916. MR 178499, DOI 10.1073/pnas.53.5.913
- D. L. Fisk, Sample quadratic variation of sample continuous, second order martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 6 (1966), 273–278. MR 210184, DOI 10.1007/BF00537825
- Dean Isaacson, Stochastic integrals an derivatives, Ann. Math. Statist. 40 (1969), 1610–1616. MR 251811, DOI 10.1214/aoms/1177697376
- Dean Isaacson, Continuous martingales with discontinuous marginal distributions, Ann. Math. Statist. 42 (1971), 2139–2142. MR 303596, DOI 10.1214/aoms/1177693081
- P.-A. Meyer, Sur un théorème de Deny, Séminaire de Probabilités (Univ. Strasbourg, Strasbourg, 1966/67) Springer, Berlin, 1967, pp. 163–165 (French). MR 0234011 —, Probability and potentials, Blaisdell, Waltham, Mass., 1966. MR 34 #5119.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 521-526
- MSC: Primary 60J65
- DOI: https://doi.org/10.1090/S0002-9939-1972-0295432-1
- MathSciNet review: 0295432