REPRESENTATION OF THE PROJECTABLE AND STRONGLY
PROJECTABLE HULLS OF A LATTICE-ORDERED GROUP

DONALD A. CHAMBRESS

ABSTRACT. A representable l-group G can be embedded into a
projectable (strongly projectable) l-group; an essential extension
of G which is minimal with respect to being projectable (strongly
projectable) is unique. In this paper these projectable and strongly
projectable “hulls” of G are represented using direct limits. If G
is an f-ring, or f-ring without nonzero nilpotent elements, then
so are these hulls.

1. Introduction. An l-group G is said to be representable if it can be
embedded into a cardinal product of totally ordered groups, projectable
if each polar subgroup of the form g^n for $g \in G$ is a cardinal summand of
G, and strongly projectable if every polar subgroup of G is a cardinal
summand. If G is projectable then each polar subgroup of G is a normal
subgroup and so G, and hence each l-subgroup of G, is representable [4,
Theorem 1.8]. Conversely, if G is representable then G is a dense l-
subgroup of its orthocompletion [2, pp. 116, 125] which is strongly
projectable.

If G is a large l-subgroup of a strongly projectable (projectable) l-group
K then the intersection H of all strongly projectable (projectable) l-
subgroups of K containing G is strongly projectable (projectable), and Conrad
[5] has shown that H is the unique (up to l-isomorphism extending the
identity map of G) minimal strongly projectable (projectable) essential
extension of G, and called H the sp-hull (p-hull) of G. In this note we wish
to give direct limit representations of these hulls in a fashion similar to
that in which Conrad [3, pp. 455–457] has represented the orthocompletion
of G. References containing related material are [1], [2], [5], [7].

NOTATION. We use the notation and terminology of the general
references [4], [6] unless otherwise specified. G will always denote a

Received by the editors June 24, 1971.

AMS 1970 subject classifications. Primary 06A55; Secondary 06A70.

Key words and phrases. Strongly projectable l-group, projectable l-group, repre-
sentation of l-groups, representable l-group, direct limits of l-groups.

This paper represents a part of the author’s dissertation submitted to the Math-
ematics Department of the Graduate School of Tulane University. The author would
like to express his appreciation to Professor P. F. Conrad for his assistance and direction.

© American Mathematical Society 1972
representable l-group (written additively, but not assumed to be abelian). For a subset \(S \) of \(G \), \(S' \) denotes the polar of \(S \), and \(\mathcal{P}(G) \) the complete Boolean algebra of polar subgroups of \(G \). \(\prod A_i \) denotes the cardinal product of the l-groups \(A_i \) and \(A \oplus B \) denotes the cardinal sum of the l-groups \(A, B \).

2. Representation of the hulls. The following discussion of the direct limit of a directed system of l-groups and l-isomorphisms and construction of the orthocompletion of \(G \) was given by Conrad in [3], but is repeated here for completeness.

Let \(\Lambda \) be a lower directed set and suppose \(\{ G_\alpha, \Pi_{\alpha \beta}, \Lambda \} \) is a lower directed system of l-groups and l-isomorphisms (i.e., if \(\alpha \leq \beta \) then \(\Pi_{\alpha \beta} \) is an l-isomorphism of \(G_\alpha \) into \(G_\beta \) where the usual transitive laws are satisfied). If \(P \) is the set product of the \(G_\alpha \), let \(L \) denote the collection of all \(t \in P \) such that if \(\alpha \leq \beta \) then \(t_\alpha \neq 0 \) or \(t_\beta = 0 \) implies \(t_\alpha \Pi_{\alpha \beta} = t_\beta \), and \(t_\alpha = 0 \) and \(t_\beta \neq 0 \) implies \(t_\beta \notin \Pi_{\alpha \beta} \).

Let \(0 \) denote the zero element of \(P \), and for \(\theta \neq k, t \in L \) select \(\alpha \) such that \(k_\alpha \neq 0 \neq t_\alpha \); then \(k + t \) is defined by \((k + t)_\alpha = k_\alpha + t_\alpha \) (each nonzero component of a nonzero element of \(L \) completely determines that element). Also call \(t \in L \) positive if \(t = 0 \) or \(t_\alpha > 0 \) for some \(\alpha \). Then \(L \) is an l-group and the direct limit of the directed system above; if \(t \in L \) and \(t_\alpha \neq 0 \) then \((t \vee 0)_\alpha = t_\alpha \vee 0 \).

Call a maximal disjoint subset of \(\mathcal{P}(G) \) a partition and let \(D(G) \) denote the set of all partitions of \(\mathcal{P}(G) \). If \(\mathcal{A} \) and \(\mathcal{C} \) are partitions then we write \(\mathcal{A} \leq \mathcal{C} \) (\(\mathcal{A} \) refines \(\mathcal{C} \)) if \(A \in \mathcal{A} \) implies \(A \subseteq C \) for some \(C \in \mathcal{C} \). If \(\mathcal{B} \in D(G) \), let \(\mathcal{D} = \{ C \cap B \neq 0 \mid C \in \mathcal{C}, B \in \mathcal{B} \} \) (the intersection of \(\mathcal{B} \) and \(\mathcal{C} \)); then \(\mathcal{D} \leq \mathcal{B}, \mathcal{C} \) and so \(D(G) \) is a lower directed set. If \(C \in \mathcal{C} \) and \(\{ A_\gamma \}_\Gamma \) is the collection of all elements of \(\mathcal{A} \) included in \(C \) then \(C = \bigcap A_\gamma \) and so the natural map of \(G[C'] \) into \(\prod \{ G[A_\gamma] \mid \gamma \in \Gamma \} \) is an l-isomorphism. In this way a natural l-isomorphism \(\Pi_{\mathcal{A}, \mathcal{C}} \) of \(G_{\mathcal{C}} = \prod \{ G[C] \mid C \in \mathcal{C} \} \) into \(G_{\mathcal{C}} \) is determined, and \(\{ G_{\mathcal{C}}, \Pi_{\mathcal{A}, \mathcal{C}}, D(G) \} \) is then a directed system; let its direct limit be \(L \). If \(t \in L \) and \(\mathcal{C} \in D(G) \) we write \(t_\mathcal{C} = (\cdots, t(C) + C', \cdots) \) where \(C \in \mathcal{C} \) and \(t(C) \in G \) (the \(t(C) \) are only determined mod \(C' \), of course). If \(g \in G \) and \(\mathcal{B} \in D(G) \) let \(\tilde{g}(B) = g \) for all \(B \in \mathcal{B} \); then the map \(g \rightarrow \tilde{g} \) is an l-isomorphism of \(G \) onto a dense l-subgroup \(\tilde{G} \) of \(L \). \(L \) is the orthocompletion of \(G \) in the sense of Bernau [2] (see [3, pp. 455–457]).

Now to construct the sp-hull of \(G \) let \(F(G) \) denote the set of all finite elements of \(D(G) \) and consider the directed system \(\{ G_{\mathcal{C}}, \Pi_{\mathcal{A}, \mathcal{C}}, F(G) \} \). If \(S \) is the direct limit of this system then we have a natural l-isomorphism \(g \rightarrow \tilde{g} \) of \(G \) into \(S \) given by \(\tilde{g}(B) = g \) for all \(B \in \mathcal{B} \) and all \(\mathcal{B} \in F(G) \), and \(\tilde{G} \) is a dense l-subgroup of \(S \). Therefore the map \(Q \rightarrow \mathcal{Q} \cap \tilde{G} \) determines a natural Boolean isomorphism of \(\mathcal{P}(S) \) onto \(\mathcal{P}(G) \) [3, p. 455], and so if
$P \in \mathcal{P}(G)$ and \ast denotes the polar operation in S, then $\mathcal{G} \cap \mathcal{P}^{**}=\mathcal{P}$ (henceforth we will identify G and \mathcal{G}).

If $\theta \neq f \in S$, $P \in \mathcal{P}(G)$, and $\mathcal{B} \in F(G)$ refines $\{P, P'\}$ then $f \in P^*$ if and only if $f(B) \equiv 0 \mod B'$ for all $B \in \mathcal{B}$ included in P. Similarly, $f \in P^{**}$ if and only if $f(B) \equiv 0 \mod B'$ for each $B \in \mathcal{B}$ included in P'. The proofs of these facts are routine.

THEOREM A. S is the sp-hull of G.

Proof. Let $Q \in \mathcal{P}(S)$ and $\theta \neq t \in S$; Q is of the form P^{**} for a unique $P \in \mathcal{P}(G)$. Pick $B \in F(G)$ such that B refines $\{P, P'\}$ and $\theta \in B$, and define $k \in S$ by specifying that, for all $B \in B$, $k(B)=t(B)$ if $P \subset P$, and $k(B)=0$ otherwise. Then $k \in P^{**} \subset Q$ and $t-k \in P^* \subset Q^*$, so that $t=(t-k)+(k \ast t) \in Q \oplus Q^*$. Therefore S is a strongly projectable essential extension of G.

Now suppose that $G \subseteq H \subseteq S$ where H is strongly projectable and let \perp denote the polar operation in H. Assume that $t \in H$, $Q \in \mathcal{P}(H)$, and write $t=t_1+t_2$ in $Q \oplus Q^*=H$ and $t=k_1+k_2$ in $Q^{**} \oplus Q^*=S$. Since $Q \subseteq Q^{**}$ and $Q^\perp \subseteq Q^*$ it follows that $t_1=k_1$ and $t_2=k_2$; thus the projections t_1 of t into Q in H and k_1 of t into Q^{**} in S are identical.

Now let $\theta \neq t \in S$ with $t_\perp=(g_1+C_1, \cdots, g_n+C_n)$ and let $t_j \in S$ be determined by $t_j(C_j)=g_j$ and $t_j(C_i)=0$ for $i \neq j$, $1 \leq j \leq n$. Then t_j is the projection of g_j into C_j^{**}, and since $g_j \in H$ it follows as discussed in the last paragraph that t_j is also the projection of g_j into C_j^\perp. Thus $t_j \in H$ and so $t=t_1+\cdots+t_n \in H$. Hence $H=S$, and so S is a minimal strongly projectable essential extension of G.

Remark. If A is an f-ring then each polar subgroup of A is an ideal and so any directed system of the A_{\perp} and Π_{\perp} is a system of f-rings and l-ring isomorphisms. Thus the direct limit of such a system is also an f-ring. If A has no nonzero nilpotent elements then A/P also has none for each polar subgroup P of A, and hence such a direct limit also has this property.

In particular, the sp-hull S of A is an f-ring (with no nonzero nilpotent elements if A has none), and the map $g \rightarrow \bar{g}$ is an l-ring isomorphism of A into S.

The p-hull of G can be constructed in an analogous (but somewhat more complicated) fashion. Here let T denote the sublattice of $\mathcal{P}(G)$ generated by all polars of the form g^\star or g' for $g \in G$ and let $T(G)$ be the set of all $C \in F(G)$ which are subsets of T. This gives rise to a directed system $\{G_{\perp}, \Pi_{\perp}, T(G)\}$, the direct limit of which we denote by T. Again we have a natural embedding $g \rightarrow \bar{g}$ given by $\bar{g}(C)=g$ for all $C \in C$ and all $C \in T(G)$ and we denote the polar operations in G and T by $'$ and \ast respectively. We identify G and \mathcal{G}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma. If $\theta \neq k \in T$ with $0 \neq k_\theta = (\cdots, k_j + C_j, \cdots)$ then $k^\ast = \vee (C_j^\ast \cap k_j^\ast)$ where the sup occurs in $P(T)$.

Proof. Without loss of generality $k > \theta$. Assume first that $G = \{C_j\}_{j=1}^n$ and $0 \neq k_\theta = (g + C_1, 0, \cdots, 0)$. If D is the intersection of G and $\{g^\ast, g'\}$ then $0 \neq k_D = (g + (C_1 \cap g')^\ast, 0, \cdots, 0)$ and so $k \in (C_1 \cap g')^\ast \cap g^\ast$. We wish to show that if $0 < t \in C_1^\ast \cap g^\ast$ then $t \land k > \theta$; then it will follow that $k^\ast = C_1^\ast \cap g^\ast$, as desired.

Consider $0 < t \in C_1^\ast \cap g^\ast$ and let $t_D > 0$ for some D refining D. Then $t(B) = 0 \mod B'$ when $B \in D$ is not included in $C_1 \cap g^\ast$, and if $B \subseteq C_1 \cap g^\ast$ and $g \notin B'$ then $g + B'$ is a weak unit for G/B'. Therefore if $t(B), g \notin B'$ for some $B \in D$ then $t_{\theta \land k} > 0$ and so $0 < t \land k$ as desired. Suppose by way of contradiction that for all $B \in D$, $g \notin B'$ implies $t(B) \in B'$ then $g_{\theta \land t_{\theta \land k}} = 0$ and so $t \in g^\ast$. Hence $0 < t \in g^\ast \cap g^\ast = \theta$, a contradiction. It follows then that $t \land k > \theta$ and so $k^\ast = C_1^\ast \cap g^\ast$.

In the general case $0 < k$ and $0 < k_\theta = (k_1 + C_1, \cdots, k_n + C_n)$. If $0 \leq t_j \in T$ is determined by $(t_j)_\theta = (0, \cdots, 0, k_j + C_j, 0, \cdots, 0)$, then

$t_j^\ast = k_j^\ast \cap C_j^\ast$ and $k = \vee t_j$

so that $k^\ast = \vee t_j^\ast = \vee (k_j^\ast \cap C_j^\ast)$.

Theorem B. T is the p-hull of G.

Proof. Suppose $0 \neq k, f \in T$ and $0 \neq k_\theta = (k_1 + C_1, \cdots, k_n + C_n)$. Then by the lemma $k^\ast = \vee (C_j^\ast \cap k_j^\ast)$, and so if $k^\ast \cap G = P \in P(G)$ then $P = \vee (G \cap C_j^\ast \cap k_j^\ast) = \vee (C_j \cap k_j^\ast)$. Thus $P \in T$ and hence $\{P, P'\} \in T(G)$. Pick $B \in T(G)$ refining $\{P, P'\}$ such that

$0 \neq f_{\theta \land B} = (f_1 + B_1, \cdots, f_m + B_m)$,

and let $t \in T$ be specified by $t(B_j) = f_j$ if $B_j \subseteq P$ and $t(B_j) = 0$ otherwise. Then $f = t + (f - t) \in P^\ast \oplus P^\ast = k^\ast \oplus k^\ast$, and so it follows that T is projectable.

Now suppose that $G \subseteq H \subseteq T$ where H is projectable and let \perp denote the polar operation in H. If $h \in H$ then $h^\perp \subseteq h^\ast$ and $h^\perp \subseteq h^\perp \perp \ast = h^\ast$ [5, (5i)]; thus if $k \in H$ then the projections of k into $h^\perp \perp$ in H and into h^\ast in T coincide.

Assume now that $0 < t \in T$ with $t_\theta > 0$.

Case 1. Suppose first that $t_\theta = (g + C_1, 0, \cdots, 0)$ where without loss of generality $0 < g \notin C_1$. Since $C_i \subseteq T$ we have $C_1 = \bigvee_I \bigwedge_J S_{i,j}$ where I and J are finite sets and $S_{i,j}$ has the form $g_{i,j}$ or $g_{i,j}'$ for some $g_{i,j} \in G$. Let D be the intersection of all the partitions $\{S_{i,j}, S_{i,j}'\}$; we claim that D refines $\{C_1, C_1'\}$. For if $B \in D$ and $B \notin C_1$, then for each i there is a j_i such that $B \notin S_{i,j_i}$; Then $B \subseteq S_{i,j_i}'$ and so $B \subseteq \bigwedge_I \bigvee_J S_{i,j_i}' = C_1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Now let \(t_{ij} \in T \) be determined by \(t_{ij}(B) = g \) if \(B \subseteq S_{ij} \) and \(t_{ij}(B) = 0 \) otherwise, and let \(k = \bigvee_{i} \Lambda J t_{ij} \). If \(k(B) \neq 0 \mod|B'| \) then \(B \subseteq C_1 \), while if \(B \subseteq C_1 \) then \(B \neq C_1 \) and so it follows that \(B \subseteq \bigwedge J S_{ij} \) for some \(i \), and hence \(k(B) = g = t(B) \). Therefore \(t_{ij} = k_{ij} \) and so \(t = \bigvee_{i} \Lambda J t_{ij} \). Since \(t_{ij} \) is the projection of \(g \in H \) into \(S_{ij}^{**} = g_{ij}^{**} \) or \(g_{ij}^{*} \), we have \(t_{ij} \in H \); thus \(t \in H \).

Case 2. In the general case we have \(t = t_{1} + \cdots + t_{n} \) where the \(t_{ij} \) have the form considered in Case 1. Thus \(t_{j} \in H \) and so \(t \in H \). Therefore \(H = T \), and so \(T \) is a minimal projectable essential extension of \(G \).

Remark. It follows as before that if \(A \) is an \(f \)-ring, or an \(f \)-ring with no nonzero nilpotent elements, then so is the \(p \)-hull of \(A \).

References

Department of Mathematics, University of Florida, Gainesville, Florida 32601