THE PSEUDOINVERSE OF AN r-CIRCULANT MATRIX

W. T.STALLINGS AND T. L. BOULLION

Abstract. It is shown that the Moore-Penrose pseudoinverse C^+ of an r-circulant matrix C is always the conjugate transpose of an r-circulant matrix. In addition, necessary and sufficient conditions are given for C^+ to be an s-circulant matrix. Finally, a method for calculating C^+ is given.

I. Introduction. The Moore-Penrose pseudoinverse of a nonsingular $n \times n$ r-circulant matrix is an s-circulant matrix where $rs \equiv 1 \pmod{n}$. A similar statement is valid for some, but not all, singular r-circulant matrices. In this paper we show that the pseudoinverse of an r-circulant matrix is always the conjugate transpose of an r-circulant matrix, and use this result to describe the class of r-circulant matrices whose pseudoinverses are s-circulant matrices for some integer s.

II. Background information.

Definition 1. An r-circulant matrix is an $n \times n$ complex matrix of the form

$$C = \begin{bmatrix}
 a_0 & a_1 & \cdots & a_{n-1} \\
 a_{n-r} & a_{n-r+1} & \cdots & a_{n-1} \\
 a_{n-2r} & a_{n-2r+1} & \cdots & a_{n-2r-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_r & a_{r+1} & \cdots & a_{r-1}
\end{bmatrix}$$

where r is a nonnegative integer and each of the subscripts is understood to be reduced modulo n.

C^* and C^+ will denote respectively the conjugate transpose and Moore-Penrose pseudoinverse of the r-circulant C. (n, r) will denote the gcd of n and r.

Definition 2. P will be the 1-circulant with first row $e_1^* = [0, 1, 0, \cdots, 0]$. Q_r will be the r-circulant with first row $e_1^* = [1, 0, \cdots, 0]$.
Property 1 [3]. The Moore-Penrose pseudoinverse of a 1-circulant is a 1-circulant.

Property 2 [2]. The Moore-Penrose pseudoinverse of a nonsingular \(r \)-circulant in an \(s \)-circulant where \(s \) satisfies \(rs \equiv 1 \pmod{n} \).

Property 3 [1]. \(C \) is an \(r \)-circulant if and only if \(PC = CP^r \).

Property 4 [1]. If \(C \) and \(D \) are \(r \)- and \(s \)-circulants respectively, then \(CD \) is an \(rs \)-circulant.

Property 5 [1]. Let \(\omega_1, \omega_2, \ldots, \omega_n \) be the \(n \)th roots of unity and let \(R_i^* = (1/\sqrt{n})[1, \omega_i^2, \ldots, \omega_i^{n-1}], i = 1, 2, \ldots, n \). Then \(\{R_i^*: i = 1, 2, \ldots, n\} \) is an orthonormal set of eigenvectors for any \(n \times n \) 1-circulant.

III. Main results.

Theorem 1. \(C \) is an \(r \)-circulant if and only if \((C^+)^* \) is an \(r \)-circulant.

Proof. By Property 3, \(C = P^*CP^r \) where \(P \) is the unitary matrix described in Definition 2. Therefore

\[
(C^+)^* = (P^*C^+P)^* = P^*(C^+)^*P^r.
\]

Using Property 3 again, we see that \((C^+)^* \) is an \(r \)-circulant. The uniqueness of \(C^+ \) gives the reverse implication.

We have said that if \(C \) is a singular \(r \)-circulant, \(C^+ \) may not be an \(s \)-circulant for any integer \(s \). The \(4 \times 4 \) matrix \(Q_2 \) is an example. \(Q_2 = \frac{1}{2}Q^*_2 \).

Theorem 2. If \(C \) is an \(n \times n \) \(r \)-circulant then \(C^+ \) is an \(s \)-circulant if and only if there exists an integer \(r \) such that \((n, r) = 1 \) and \(C \) is also an \(r \)-circulant. In such a case there exists an integer \(s \) such that \(rs \equiv 1 \pmod{n} \) and \(C^+ \) is also an \(s \)-circulant.

In order to prove the "if" part of Theorem 2 we need two lemmas.

Lemma 1. The \(n \times n \) matrix \(Q_r \) is unitary if and only if \((n, r) = 1 \).

Proof. From Definition 2 it is clear that

\[
Q_r = \begin{bmatrix}
e_1^*
nr+1 \\
\vdots \\
\vdots \\
e_{(n-1)r+1}^*
\end{bmatrix}.
\]

\(Q_r \) will be singular if and only if there exist integers \(i \) and \(j \) satisfying \(0 \leq i < j < n \) such that \(ir \equiv jr \pmod{n} \); that is, if and only if there exists an
integer b such that

$$bn = ir - jr = (i - j)r.$$

Since $|i - j| < n$, (1) is valid if and only if $(n, r) > 1$.

The following lemma is a result of Definitions 1 and 2.

Lemma 2. C is an r-circulant with first row $[a_0, a_1, \cdots, a_{n-1}]$ if and only if $C = \sum_{i=0}^{n-1} a_i Q_r P^i$.

Proof of Theorem 2 ("if" part only). If C is also an r-circulant where $(n, r) = 1$, then $C = \sum_{i=0}^{n-1} a_i Q_r P^i = Q_r C_1$ where Q_r is unitary and C_1 is a 1-circulant with the same first row as C. By Properties 1, 2 and 4, $C^+ = C_1^+ Q_r^+$ is an s-circulant where $rs \equiv 1 \pmod{n}$.

Theorem 1 tells us that if we replace "C^+" with "C^*" in Theorem 2 we have a statement which is equivalent to Theorem 2. Hence we can complete the proof of Theorem 2 by proving the "only if" part for C^*.

Lemma 3. If C is an r-circulant with first row $[a_0, a_1, \cdots, a_{n-1}]$ then C^* is an s-circulant if and only if $a_i^s \equiv a_i \pmod{n}$, where the subscripts are understood to be reduced modulo n.

Proof. Referring to Definition 1, the first column of C^* can be written as both

$$\begin{bmatrix}
\tilde{a}_0 \\
\tilde{a}_1 \\
\tilde{a}_2 \\
\vdots \\
\tilde{a}_{n-1}
\end{bmatrix} \quad \text{and} \quad \begin{bmatrix}
\tilde{a}_0 \\
\tilde{a}_r \\
\tilde{a}_{grs} \\
\vdots \\
\tilde{a}_{(n-1)rs}
\end{bmatrix}.$$

The lemma follows from equating like elements and observing that C^* is completely described by specifying r and the first column of C^*.

Proof of Theorem 2 ("only if" part). Suppose C and C^* are $r_1 \times s_1$- and $s_1 \times r_1$-circulants, respectively, such that $(r_1, n_1) > 1$ and $(s_1, n_1) > 1$. If $r_1 = 0$ or $s_1 = 0$ every element of C must be the same and C is an r_1-circulant for any r such that $0 \leq r < n$. If $r_1 \neq 0$, define $n_2 = n_1/(r_1 s_1, n_1)$ and $k_1 = n_1/n_2$. By Lemma 3, $a_i = a_{n_2 i} = a_{2n_2 i} = \cdots = a_{(k_1 - 1)n_2 i}$, $i = 0, 1, \cdots, n_1 - 1$. Thus C must be a composite of k_1 identical $n_2 \times n_2$ matrices. Define r_2 to be the modulo n_2 residue of r_1. Each of the $n_2 \times n_2$ matrices is an r_2-circulant and C is an h-circulant for all $h \in \{r_2 + jn_2 : j = 0, 1, 2, \cdots, k_1 - 1\} = H$. If $(r_2, n_2) = 1$ the collection $\{r_2 + jn_2 : j = 0, \pm 1, \pm 2, \cdots\} = J$ contains infinitely many primes larger than n_1. Each element in J is congruent
modulo n_1 to some element in H. But a prime larger than n_1 is congruent modulo n_1 to an element in the reduced residue system of n_1. Thus there exists an $r \in H$ such that $(r, n_1) = 1$ and C is an r-circulant. If $r_2 = 0$ the situation is the same as when $r_1 = 0$.

If $(r_2, n_2) > 1$, define s_2 to be the modulo n_2 residue of s_1 and repeat the above with n_2, n_3, r_2, s_2 and k_2. If $(r_3, n_3) > 1$ continue to repeat the process until $(r_m, n_m) = 1$ or $r_m = 0$ for some m. The latter case yields the same situation as $r_1 = 0$. If $r_i \neq 0$ for any i we can guarantee that an m does exist such that $(r_m, n_m) = 1$ since n_i divides $n_{i-1}, i = 2, 3, \cdots, m$. Now C is an h-circulant for all $h \in \{r_m + jn_m : j = 0, 1, \cdots, k_{m-1} - 1\} = H_m$. As before, we can find an $r \in H_m$ such that $(r, n_1) = 1$.

Corollary 1. If C and D are $n \times n$ r-circulants then CD^* is a 1-circulant. If $(n, r) = 1$ then C^*D is a 1-circulant.

Proof. CD^* is a 1-circulant since $CD^* = P*CP^*P^*D^*P = P*CD*P$.

We can now conclude that if C is an r-circulant, then CC^+ must be a 1-circulant, but C^+C may not be unless $(n, r) = 1$. The 4 × 4 matrix Q_2 illustrates this point.

Calculation of C^+ is simple. Let R be the matrix whose columns are the R_i defined in Property 5. $R^*CC^*R = D$ is a diagonal matrix and $C^+ = C^*(CC^*)^+ = C^*RD^+R^*$. If there exists an r such that C is an r-circulant and $(n, r) = 1$ the following formula is also valid and requires one less matrix multiplication:

$$C^+ = C^*_1Q^*_1 = R D^*_1R^*Q^*_1,$$

where C_1 is defined as in the proof of Theorem 2 and $R^*C_1R = D_1$.

Bibliography

