THE PSEUDOINVERSE OF AN \(r \)-CIRCULANT MATRIX

W. T. STALLINGS AND T. L. BOULLION

Abstract. It is shown that the Moore-Penrose pseudoinverse \(C^+ \) of an \(r \)-circulant matrix \(C \) is always the conjugate transpose of an \(r \)-circulant matrix. In addition, necessary and sufficient conditions are given for \(C^+ \) to be an \(s \)-circulant matrix. Finally, a method for calculating \(C^+ \) is given.

I. Introduction. The Moore-Penrose pseudoinverse of a nonsingular \(n \times n \) \(r \)-circulant matrix is an \(s \)-circulant matrix where \(rs \equiv 1 \pmod{n} \). A similar statement is valid for some, but not all, singular \(r \)-circulant matrices. In this paper we show that the pseudoinverse of an \(r \)-circulant matrix is always the conjugate transpose of an \(r \)-circulant matrix, and use this result to describe the class of \(r \)-circulant matrices whose pseudoinverses are \(s \)-circulant matrices for some integer \(s \).

II. Background information.

Definition 1. An \(r \)-circulant matrix is an \(n \times n \) complex matrix of the form

\[
C = \begin{bmatrix}
a_0 & a_1 & \cdots & a_{n-1} \\
a_{n-r} & a_{n-r+1} & \cdots & a_{n-1} \\
a_{n-2r} & a_{n-2r+1} & \cdots & a_{n-2r-1} \\
\vdots & \vdots & \ddots & \vdots \\
a_r & a_{r+1} & \cdots & a_{r-1}
\end{bmatrix}
\]

where \(r \) is a nonnegative integer and each of the subscripts is understood to be reduced modulo \(n \).

\(C^* \) and \(C^+ \) will denote respectively the conjugate transpose and Moore-Penrose pseudoinverse of the \(r \)-circulant \(C \). \((n, r)\) will denote the gcd of \(n \) and \(r \).

Definition 2. \(P \) will be the \(1 \)-circulant with first row \(e^*_1 = [0, 1, 0, \cdots, 0] \). \(Q_r \) will be the \(r \)-circulant with first row \(e^*_r = [1, 0, \cdots, 0] \).

Received by the editors June 15, 1971 and, in revised form, October 4, 1971.
AMS 1970 subject classifications. Primary 15A09.
Key words and phrases. Pseudoinverse, \(r \)-circulant matrix.
Property 1 [3]. The Moore-Penrose pseudoinverse of a 1-circulant is a 1-circulant.

Property 2 [2]. The Moore-Penrose pseudoinverse of a nonsingular r-circulant in an s-circulant where s satisfies rs ≡ 1 (mod n).

Property 3 [1]. C is an r-circulant if and only if PC = CP^r.

Property 4 [1]. If C and D are r- and s-circulants respectively, then CD is an rs-circulant.

Property 5 [1]. Let \(\omega_1, \omega_2, \ldots, \omega_n \) be the nth roots of unity and let \(R_i^* = (1/\sqrt{n})[1, \omega_i, \omega_i^2, \ldots, \omega_i^{n-1}], i = 1, 2, \ldots, n \). Then \(\{ R_i^*: i = 1, 2, \ldots, n \} \) is an orthonormal set of eigenvectors for any \(n \times n \) 1-circulant.

III. Main results.

Theorem 1. C is an r-circulant if and only if \((C^+)^*\) is an r-circulant.

Proof. By Property 3, \(C = P^r CP^r \) where \(P \) is the unitary matrix described in Definition 2. Therefore

\[
(C^+)^* = (P^r C^r P)^* = P^* (C^+)^* P^r.
\]

Using Property 3 again, we see that \((C^+)^*\) is an r-circulant. The uniqueness of \(C^+ \) gives the reverse implication.

We have said that if \(C \) is a singular r-circulant, \(C^+ \) may not be an s-circulant for any integer \(s \). The \(4 \times 4 \) matrix \(Q_2 \) is an example. \(Q_2 = \frac{1}{2}Q^*_2 \).

Theorem 2. If \(C \) is an \(n \times n \) r-circulant then \(C^+ \) is an s-circulant if and only if there exists an integer \(r \) such that \((n, r) = 1 \) and \(C \) is also an r-circulant. In such a case there exists an integer \(s \) such that \(rs \equiv 1 \) (mod n) and \(C^+ \) is also an s-circulant.

In order to prove the "if" part of Theorem 2 we need two lemmas.

Lemma 1. The \(n \times n \) matrix \(Q_r \) is unitary if and only if \((n, r) = 1 \).

Proof. From Definition 2 it is clear that

\[
Q_r = \begin{bmatrix}
e_1^* \\
e_r^* \cr
.. \\
.. \\
e_{(n-1)r+1}^*
\end{bmatrix}.
\]

\(Q_r \) will be singular if and only if there exist integers \(i \) and \(j \) satisfying \(0 \leq i < j < n \) such that \(ir \equiv jr \) (mod n); that is, if and only if there exists an
integer \(b \) such that
\[
bn = ir - jr = (i - j)r.
\]
Since \(|i - j| < n\), (1) is valid if and only if \((n, r) > 1\).

The following lemma is a result of Definitions 1 and 2.

Lemma 2. C is an \(r \)-circulant with first row \([a_0, a_1, \ldots, a_{n-1}]\) if and only if
\[
C = \sum_{i=0}^{n-1} a_i Q_r P_i.
\]

Proof of Theorem 2 ("if" part only). If \(C \) is also an \(r \)-circulant where \((n, r) = 1\), then \(C = \sum a_i Q_r P_i = Q_r C_1 \) where \(Q_r \) is unitary and \(C_1 \) is a
1-circulant with the same first row as \(C \). By Properties 1, 2 and 4, \(C^+ = C_1^+ Q_r^* \) is an \(s \)-circulant where \(rs = 1 \) (mod \(n \)).

Theorem 1 tells us that if we replace "\(C^+ \)" with "\(C^* \)" in Theorem 2 we have a statement which is equivalent to Theorem 2. Hence we can complete the proof of Theorem 2 by proving the "only if" part for \(C^* \).

Lemma 3. If \(C \) is an \(r \)-circulant with first row \([a_0, a_1, \ldots, a_{n-1}]\) then \(C^* \) is an \(s \)-circulant if and only if \(a_{i+rs} = a_i \), \(i = 0, 1, \ldots, n-1 \), where the subscripts are understood to be reduced modulo \(n \).

Proof. Referring to Definition 1, the first column of \(C^* \) can be written as both
\[
\begin{bmatrix}
\tilde{a}_0 \\
\tilde{a}_1 \\
\tilde{a}_2 \\
\vdots \\
\tilde{a}_{n-1}
\end{bmatrix}
\text{ and }
\begin{bmatrix}
\tilde{a}_0 \\
\tilde{a}_r \\
\tilde{a}_{2r} \\
\vdots \\
\tilde{a}_{(n-1)r}
\end{bmatrix}
\]

The lemma follows from equating like elements and observing that \(C^* \) is completely described by specifying \(r \) and the first column of \(C^* \).

Proof of Theorem 2 ("only if" part). Suppose \(C \) and \(C^* \) are \(r_1 \times n_1 \)
\(r_2 \)- and \(s_1 \)-circulants, respectively, such that \((r_1, n_1) > 1\) and \((s_1, n_1) > 1\).
If \(r_1 = 0 \) or \(s_1 = 0 \) every element of \(C \) must be the same and \(C \) is an \(r \)-circulant for any \(r \) such that \(0 \leq r < n \). If \(r_1 \neq 0 \), define \(n_2 = n_1/(r_1 s_1, n_1) \) and \(k_1 = n_1/n_2 \). By Lemma 3, \(a_i = a_{i+rs} = a_{2n_2+i} = \cdots = a_{(k_1-1)n_2+i}, i = 0, 1, \ldots, n_1-1 \). Thus \(C \) must be a composite of \(k_1 \) identical \(n_2 \times n_2 \) matrices. Define \(r_2 \) to be the modulo \(n_2 \) residue of \(r_1 \). Each of the \(n_2 \times n_2 \) matrices is an \(r_2 \)-circulant and \(C \) is an \(h \)-circulant for all \(h \in \{r_2+jn_2: j = 0, 1, 2, \ldots, k_1-1\} = H \). If \((r_2, n_2) = 1 \) the collection \(\{r_2+jn_2: j = 0, \pm 1, \pm 2, \cdots\} = J \) contains infinitely many primes larger than \(n_1 \). Each element in \(J \) is congruent
modulo n_1 to some element in H. But a prime larger than n_1 is congruent
modulo n_1 to an element in the reduced residue system of n_1. Thus there
exists an $r \in H$ such that $(r, n_1)=1$ and C is an r-circulant. If $r_2=0$ the
situation is the same as when $r_1=0$.

If $(r_2, n_2)>1$, define s_2 to be the modulo n_2 residue of s_1 and repeat the
above with n_2, n_3, r_2, s_2 and k_2. If $(r_3, n_3)>1$ continue to repeat the process
until $(r_m, n_m)=1$ or $r_m=0$ for some m. The latter case yields the same
situation as $r_1=0$ If $r_i \neq 0$ for any i we can guarantee that an m does exist such that $(r_m, n_m)=1$ since n_i divides $n_{i-1}, i=2, 3, \ldots, m$. Now C is an
h-circulant for all $h \in \{r_m+jn_m:j=0, 1, \ldots, k_{m-1}-1\} = H_m$. As before,
we can find an $r \in H_m$ such that $(r, n_i)=1$.

Corollary 1. If C and D are $n \times n$ r-circulants then CD^* is a 1-
circulant. If $(n, r)=1$ then C^*D is a 1-circulant.

Proof. CD^* is a 1-circulant since $CD^* = P*CP^*P^*D^*P = P*CD*P$.

We can now conclude that if C is an r-circulant, then CC^+ must be a
1-circulant, but C^+C may not be unless $(n, r)=1$. The 4×4 matrix Q_2
illustrates this point.

Calculation of C^+ is simple. Let R be the matrix whose columns are the
R_i defined in Property 5. $R^*CC*R = D$ is a diagonal matrix and $C^+ =
C^+(CC^+)^+ = C^*RD^+R^*$. If there exists an r such that C is an r-circulant
and $(n, r)=1$ the following formula is also valid and requires one less
matrix multiplication:

$$C^+ = C^+Q_1^* = RD_1^+R^*Q_1^*,$$

where C_1 is defined as in the proof of Theorem 2 and $R^*C_1R = D_1$.

Bibliography

1. C. M. Ablow and J. L. Brenner, *Roots and canonical forms for circulant matrices*,
2. S. Charmonman and R. S. Julius, *Explicit inverses and condition numbers of

**Department of Mathematics, United States Air Force Academy, Colorado
80840**

Department of Mathematics, Texas Tech University, Lubbock, Texas 79409