Abstract. Let G be a compact nonabelian group and H be a closed subgroup of G. Then H is a set of spectral synthesis for the Fourier algebra $A(G)$ (and indeed for $A^*(G)$, $1 \leq p < \infty$). For $1 \leq p < \infty$, each $L^p(G)$-multiplier T corresponds to a $L^p(H)$-multiplier S by the rule $(Tf)|_H = S(f)|_H$, if and only if the support of T is contained in H.

Let G be a compact nonabelian group and \hat{G} its dual. We denote the Fourier algebra by $A(G)$ and its dual by $L^\infty(\hat{G})$. We will use the notation from our book [1].

Let $\phi \in L^\infty(\hat{G})$, then the support of ϕ, denoted by $\text{spt} \phi$, is defined to be the intersection of the sets $\{K \subset G : K$ is compact and $(\phi, f) = 0$ whenever the support of $f \subset G \setminus K, f \in A(G)\}$ [1, p. 94]. For $f \in C(G)$, $\text{spt} f$ denotes the usual support of f. For u a bounded Borel function on G, define \hat{u} by $\hat{u}(x) = u(x^{-1})$, $x \in G$.

Let E be a closed subset of G. The set E is called a set of spectral synthesis for $A(G)$ provided whenever $f \in A(G)$, $f(x) = 0$ for $x \in E$, and $\varepsilon > 0$, there exists $g \in A(G)$ with $g = 0$ on a neighborhood of E and $\|f - g\|_{A} < \varepsilon$. We will show that closed subgroups H of G are sets of spectral synthesis for $A(G)$. Our proof is adapted from [3] where the result is given for H normal. Henceforth H will be a fixed closed subgroup of G, with normalized Haar measure m_H.

Proposition 1. Let $f \in A(G)$, $f = 0$ on H, and $\varepsilon > 0$. Then there exists a neighborhood W of the identity e of G such that if u is a nonnegative bounded Borel function on W, and $\int_G u(x) \, dm_G(x) = 1$, then $\|f - \hat{u}\|_{A} \leq \varepsilon$.

Proof. Since translation is continuous in $A(G)$ [1, p. 91], there exists a neighborhood W of e such that if $y \in W$, then $\|f - R(y)f\|_{A} \leq \varepsilon$ ($R(y)f(x) = f(xy), x, y \in G$).
Thus
\[\| f - f \ast u \|_A = \sup \left\{ \left\| \int_G (f - f \ast u) g \, dm_G \right\| : g \in L^1(G), \| \hat{g} \|_\infty \leq 1 \right\} \]
(see [1, p. 92])

\[= \sup \left\{ \left\| \int_G \int_W (f(x) - R(y)f(x))u(y) \, dm_G(y)g(x) \, dm_G(x) \right\| : \right. \]
\[g \in L^1(G), \| \hat{g} \|_\infty \leq 1 \}
\[\leq \varepsilon. \quad \square \]

The proof of the following proposition was shown to us by our colleague R. E. Stong.

Proposition 2. Let \(W \) be a neighborhood of \(e \). There exists a non-negative continuous function \(w \) on \(G \) with \(\text{spt } w \subseteq W \), such that the function \(\pi w = m_H \ast w \) is equal to \(1 \) on \(HW' \) (\(W' \) a neighborhood of \(e \)).

Proof. Let \(h_1, \ldots, h_n \in H \) be such that \(\bigcup_{i=1}^n h_i W \supset H \). Choose a neighborhood \(W' \) of \(e \) with \(H \subseteq \text{cl}(HW') \subseteq \bigcup_{i=1}^n h_i W \) (\(\text{cl} \) denotes closure). Let \(\phi_1, \ldots, \phi_n \) be a partition of unity subordinate to the cover \(\{h_1 W, \ldots, h_n W\} \) (\(\text{spt } \phi_i \subseteq h_i W, i = 1, \ldots, n \)) such that \(\sum_{i=1}^n \phi_i(x) = 1 \) for \(x \in HW' \).

Let \(w(x) = \sum_{i=1}^n \phi_i(h_i x), \ x \in G. \) Then \(w \subseteq W \). Finally, let \(x \in HW' \); then
\[\pi w(x) = (m_H \ast w)(x) = \int_H w(hx) \, dm_H(h) \]
\[= \int_H \sum_{i=1}^n \phi_i(h_i hx) \, dm_H(h) \]
\[= \int_H \sum_{i=1}^n \phi(hx) \, dm_H(h) = \int_H 1 \, dm_H(h) = 1. \quad \square \]

Theorem 3. Let \(H \) be a closed subgroup of \(G \). Then \(H \) is a set of spectral synthesis for \(A(G) \).

Proof. Let \(f \in A(G), \ f = 0 \) on \(H \), and \(\varepsilon > 0 \). Let \(W \) be as in Proposition 1. Now choose \(w, \pi w, \) and \(W' \) as in Proposition 2. Since \(f = 0 \) on \(H \), there exists a neighborhood \(V \) of \(e \) such that \(\| f^2(x) \| \leq \varepsilon^2 \| w^2 \|_\infty \) for \(x \in HV \).

Now choose neighborhoods \(U, U' \) of \(e \) such that \(U' HU \subseteq HV \cap HW' \) and \(m_G(U' HU) \leq 4m_G(HU) \).

Let \(u \) and \(v \) be bounded Borel functions on \(G \) defined by
\[u(x) = (m_G(HU))^{-1} w(x), \quad \text{if } x \in HU, \]
\[= 0, \quad \text{if } x \notin HU, \]
and
\[v(x) = f(x), \quad \text{if } x \in U'HU, \]
\[= 0, \quad \text{if } x \notin U'HU. \]

Write \(f = f * \tilde{u} + (f - v) * \tilde{u} + v * \tilde{u} \), and let \(g = (f - v) * \tilde{u} \) and \(h = v * \tilde{u} \). Note that \(f * \tilde{u}, \, g, \, h \in A(G) = L^2(G)^*L^2(G) \) [1, p. 92]. We will show that \(\|f - g\|_A \leq 3\varepsilon \) and \(g = 0 \) on a neighborhood of \(H \).

Let \(x \in U'H \), then
\[g(x) = (f - v) * \tilde{u}(x) = \int_G (f - v)(xy) u(y) \, dm_G(y) \]
\[= \int_{HU} (f(xy) - v(xy)) u(y) \, dm_G(y) = 0 \]
since \(xy \in U'HHU = U'HU \). Thus spt \(g \subset HU \).

Now \(\|f - f * \tilde{u}\|_A \leq \varepsilon \) since \(u \) is a nonnegative bounded Borel function on \(G \), spt \(u \subset \text{spt} \, w \subset W \), and
\[\int_G u(x) \, dm_G(x) = \frac{1}{m_G(HU)} \int_{HU} w(x) \, dm_G(x) \]
\[= \frac{1}{m_G(HU)} \int_{HU} \pi w(Hx) \, d\omega(Hx) = 1 \]
(where \(\omega \in M(G/H) \) is the unique normalized measure such that \(\int_{G/H} R(x)f \, d\omega = \int_{G/H} f \, d\omega \), where \(R(x)f(Hy) = f(Hyx), \, x, \, y \in G, \, f \in C(G/H); \) see [1, p. 101]).

It remains to show that \(\|h\|_A \leq 2\varepsilon \). Now \(\|h\|_A \leq \|v\|_2 \|u\|_2 \) and
\[\|\tilde{u}\|_2^2 = \|u\|_2^2 = \int_G u^2(x) \, dm_G(x) \leq \|w^2\|_\infty / m_G(HU). \]
Thus \(\|\tilde{u}\|_2 \leq (\|w^2\|_\infty / m_G(HU))^{1/2} \). Also
\[\|v\|_2^2 = \int_{U'HU} |f^2(x)| \, dm_G(x) \]
\[\leq (\varepsilon / \|w^2\|_\infty) m_G(U'HU) \leq 4\varepsilon^2 m_G(HU) / \|w^2\|_\infty. \]
Thus \(\|v\|_2 \leq 2\varepsilon (m_G(HU) / \|w^2\|_\infty)^{1/2} \), and so \(\|h\|_A \leq 2\varepsilon \). □

Remark. Let \(1 \leq p < \infty \) and \(A^p(G) \) the predual of \(M^p(G) \), the \(L^p(G) \)-multipliers (see [2, p. 500]). If \(H \) is a closed subgroup of the compact group \(G \), then \(H \) is a set of spectral synthesis for \(A^p(G) \). The proof is the same as the proof of Theorem 3 with only slight modifications.

Corollary 4. Suppose \(H \) is a closed subgroup of a compact group \(G \) and \(T \) is an \(L^p(G) \)-convolution operator. Then \(T \) corresponds to an
$L^p(H)$-convolution operator S by the rule $(Tf)|_H=S(f|_H)$, $f \in A(G)$, if and only if $\text{spt } T \subseteq H$. This correspondence is an isometry.

Proof. This follows immediately from the result of Herz [3, p. 317] that the restriction map $f \mapsto f|_H$ from $A^p(G)$ to $A^p(H)$ is onto. □

Remark. For G a locally compact abelian group and H a closed subgroup, the analogous result of Corollary 4 has been shown by S. Saeki [5]. For G a locally compact group and H a compact normal subgroup, the analogous result to Corollary 4 has been shown by C. Herz ([3], [4]).

Remark. Let G be a compact group and H a normal closed subgroup. If $T \in M^p(G)$ such that $Tf=T(m_H*f)$, $f \in A(G)$, then there exists $S \in M^p(G/H)$ such that $Sf=Tf$ for $f \in A(G/H)=m_H*A(G)$ [1, p. 106], and $\|S\|=\|T\|$. Conversely, if $S \in M^p(G/H)$, then there exists $T \in M^p(G)$ defined by $Tf=S(m_H*f)$, $f \in A(G)$, and $\|T\|=\|S\|$.

Bibliography