$L^{p}$-convolution operators supported by subgroups
HTML articles powered by AMS MathViewer
- by Charles F. Dunkl and Donald E. Ramirez
- Proc. Amer. Math. Soc. 34 (1972), 475-478
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296215-9
- PDF | Request permission
Abstract:
Let G be a compact nonabelian group and H be a closed subgroup of G. Then H is a set of spectral synthesis for the Fourier algebra $A(G)$ (and indeed for ${A^p}(G),1 \leqq p < \infty$). For $1 \leqq p < \infty$, each ${L^p}(G)$-multiplier T corresponds to a ${L^p}(H)$-multiplier S by the rule $(Tf)|H = S(f|H),f \in A(G)$, if and only if the support of T is contained in H.References
- Charles F. Dunkl and Donald E. Ramirez, Topics in harmonic analysis, The Appleton-Century Mathematics Series, Appleton-Century-Crofts [Meredith Corporation], New York, 1971. MR 0454515
- Alessandro Figà-Talamanca, Translation invariant operators in $L^{p}$, Duke Math. J. 32 (1965), 495–501. MR 181869
- Carl Herz, Le rapport entre l’algèbre $A_{p}$ d’un groupe et d’un sousgroupe, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A244–A246 (French). MR 273428 —, Le rapport entre l’algèbre ${A_p}$ d’un groupe et d’un sous-groupe, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A244-A246. MR 42 #8307a.
- Sadahiro Saeki, Translation invariant operators on groups, Tohoku Math. J. (2) 22 (1970), 409–419. MR 275057, DOI 10.2748/tmj/1178242767
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 475-478
- MSC: Primary 43A15
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296215-9
- MathSciNet review: 0296215