THE SOLVABILITY OF THE EQUATION $ax^2+by^2=c$ IN QUADRATIC FIELDS

NEAL PLOTKIN

Abstract. In a recent paper, L. J. Mordell gave necessary and sufficient conditions for the equation $ax^2+by^2=c$ to have algebraic integer solutions in the quadratic field $Q(\sqrt{(-n)})$. In this paper we drop the requirement that the solutions be algebraic integers. In particular, we prove that $ax^2+by^2=c$ has solutions in $Q(\sqrt{(-n)})$ if and only if the quadratic form $abt^2-bcu^2-acv^2-nw^2$ represents 0 over Q.

I. Theorem 1. Let a, b, c be nonzero rational numbers, and n an integer. Then solutions of the equation $ax^2+by^2=c$ exist in the quadratic field $Q(\sqrt{(-n)})$ if and only if solutions of $abt^2-bcu^2-acv^2=n$ exist in the field of rationals, Q.

We remark that rational solutions of $abt^2-bcu^2-acv^2=n$ exist if and only if the quadratic form $abt^2-bcu^2-acv^2-nw^2$ represents 0 in Q. The latter representation is a classical problem with a known solution—see [2, p. 75], noting that by a simple change of variables, we may assume the coefficients of $abt^2-bcu^2-acv^2-nw^2$ are square-free integers, no three having a factor in common.

Proof of Theorem 1. (\Leftarrow) Suppose there exist t_0, u_0, $v_0 \in Q$ with $abt^2_0-bcu^2_0-acv^2_0=n$.

Case I. Suppose $bu_0+av_0=0$. Then $abt^2_0=n$.

Let $x=((b-c)/2abt_0)\sqrt{(-n)}$, $y=(b+c)/2b$.

Case II. Suppose $bu_0+av_0\neq 0$.

Let $x=(1/d)(bt_0u_0+v_0\sqrt{(-n)})$, $y=((-d)(at_0v_0-u_0\sqrt{(-n)}))$, where $d=bu_0^2+av_0^2$.

In either case, an easy calculation shows that $ax^2+by^2=c$.

(\Rightarrow) Suppose $ax^2_0+by^2_0=c$, where $x_0=r+s\sqrt{(-n)}$, $y_0=p+q\sqrt{(-n)}$.
\[p, q, r, s \in \mathbb{Q}. \] Then

\[
c = a(r + s\sqrt{(-n)})^2 + b(p + q\sqrt{(-n)})^2
= (ar^2 - ans^2 + bp^2 - bnq^2) + (2ars + 2bpq)s\sqrt{(-n)}.
\]

Therefore \(ars + bpq = 0. \)

Case I. Suppose \(q = 0. \) Then \(c = ar^2 - ans^2 + bp^2, \) and also \(ars = 0, \) so either \(r \) or \(s = 0. \) If \(s = 0, \) we have \(c = ar^2 + bp^2. \) Upon multiplying by \(abc, \) this yields \(abc^2 = bca^2r^2 + a^2b^2q^2, \) which may be rewritten \(ab(c)^2 - bc(ar)^2 - ac(bp)^2 = 0; \) i.e. the quadratic form \(abt^2 - bcu^2 - acv^2 \) represents \(0 \) in \(\mathbb{Q}. \)

By a well-known result [2, p. 41], \(abt^2 - bcu^2 - acv^2 \) also represents \(n \) in \(\mathbb{Q}. \)

If \(r = 0, s \neq 0, \) then \(c = bp^2 - ans^2, \) so \(n = (bp^2 - c)/as^2, \) which may be rewritten in the form \(n = ab(p/as)^2 - ac(1/as)^2 - bc(0)^2, \) which is a rational solution of \(n = abt^2 - bcu^2 - acv^2. \)

Case II. Suppose \(q \neq 0. \) Then \(p = -ars/bq. \) Therefore

\[
(*) \quad c = ar^2 - ans^2 + b(ar/bq)^2 - bnq^2.
\]

Solving for \(n, \) we get

\[
n = \frac{1}{xs^2 + bq^2} \left(ar^2 + \frac{a^2rs^2}{bq^2} - c \right) = \frac{ar^2}{bq^2} - \frac{c}{xs^2 + bq^2}
= ab \left(\frac{r}{bq} \right)^2 - ac \left(\frac{s}{xs^2 + bq^2} \right)^2 - bc \left(\frac{q}{xs^2 + bq^2} \right)^2,
\]

a rational solution of \(n = abt^2 - bcu^2 - acv^2. \)

Note that \(c \neq 0 \Rightarrow as^2 + bq^2 \neq 0 \) (from \(*) \). This completes the proof.

As an interesting special case, we get the following result of Fein and Gordon [1, Theorem 7].

Corollary 1. \(x^2 + y^2 = -1 \) may be solved in \(\mathbb{Q}(\sqrt{(-n)}), \) \(n \) a square-free integer, if and only if \(n > 0 \) and \(n \equiv 7 \pmod{8}. \)

Proof. Take \(a = b = -c = 1 \) in the theorem. We find that there are solutions in \(\mathbb{Q}(\sqrt{(-n)}), \) if and only if \(n \) is the sum of three squares, \(r^2 + u^2 + v^2, \) in \(\mathbb{Q}. \) By clearing denominators, we see that this occurs if and only if \(nw^2 = t_1^2 + u_1^2 + v_1^2, \) where \(t_1, u_1, v_1, w \) are integers. But it is well known that this is true if and only if \(nw^2 \) is not of the form \(4^i(8j + 7), \) i.e. if and only if \(n \) (being square-free) is not congruent to 7 \(\pmod{8}. \)

II. In [3, p. 118], L. J. Mordell showed that \(ax^2 + by^2 = c \) has algebraic integer solutions in precisely the quadratic fields:

\[A : \mathbb{Q}(\sqrt{(-abd^2/d_1^2 - c|d)}), \]

where \(d|abc, p \) and \(q \) are integers such that \(ap^2 + bq^2 = d, (ap, bq) = d_1, \) and
k is any integer making the radicand an integer, and

\[B: \mathbb{Q}(\sqrt{-(abk^2/d_1^2 - 4c/d)}) \]

where \(d \mid abc \), \(p \), \(q \), and \(d_1 \) are as above, and \(k \) is any integer such that \(k = (abk^2/4d_1^2) - c/d \) is an integer.

In this section we show that the result of Theorem 1 is distinct from that of Mordell, i.e. there exists a field \(\mathbb{Q}(\sqrt{-(n)}) \) in which \(x^2 + y^2 = -1 \) has solutions but no algebraic integer solutions.

We have \(a = b = -c = 1 \). In case A, \(d = 1 \), so \(p = 0 \) or 1, \(q = 1 \) or 0, and \(d_1 = 1 \). Therefore there are algebraic integer solutions in the field \(\mathbb{Q}(\sqrt{-(k^2+1)}) \), any integer \(k \). In case B, \(d = 2 \), \(p = q = d_1 = 1 \), and so there are algebraic integer solutions in any field \(\mathbb{Q}(\sqrt{-(k^2+2)}) \), \(k \) odd. These are all.

In the field \(\mathbb{Q}(\sqrt{-(6)}) \), \(x = (2 + \sqrt{-(6)})/2 \), \(y = (2 - \sqrt{-(6)})/2 \) is a solution of \(x^2 + y^2 = -1 \). However, \(\mathbb{Q}(\sqrt{-(6)}) \) is neither of the form \(\mathbb{Q}(\sqrt{-(k^2+1)}) \), \(k \) an integer, nor \(\mathbb{Q}(\sqrt{-(k^2+2)}) \), \(k \) odd. For suppose \(\mathbb{Q}(\sqrt{-(6)}) = \mathbb{Q}(\sqrt{-(k^2+1)}) \). Then \(k^2 + 1 = 6j^2 \), some integer \(j \). It is easy to see there are no such \(k \), \(j \) by considering the equation mod 8. Now suppose \(\mathbb{Q}(\sqrt{-(6)}) = \mathbb{Q}(\sqrt{-(k^2+2)}) \), \(k \) odd. Therefore \(k^2 + 2 = 6j^2 \). Since \(k \) is odd, we again get a contradiction mod 8.

Bibliography