THE SOLVABILITY OF THE EQUATION $ax^2 + by^2 = c$
IN QUADRATIC FIELDS

NEAL PLOTKIN

Abstract. In a recent paper, L. J. Mordell gave necessary and sufficient conditions for the equation $ax^2 + by^2 = c$ to have algebraic integer solutions in the quadratic field $\mathbb{Q}(\sqrt{(-n)})$. In this paper we drop the requirement that the solutions be algebraic integers. In particular, we prove that $ax^2 + by^2 = c$ has solutions in $\mathbb{Q}(\sqrt{(-n)})$ if and only if the quadratic form $abt^2 - bcu^2 - acv^2 - nw^2$ represents 0 over \mathbb{Q}.

I. Theorem 1. Let a, b, c be nonzero rational numbers, and n an integer. Then solutions of the equation $ax^2 + by^2 = c$ exist in the quadratic field $\mathbb{Q}(\sqrt{(-n)})$ if and only if solutions of $abt^2 - bcu^2 - acv^2 = n$ exist in the field of rationals, \mathbb{Q}.

We remark that rational solutions of $abt^2 - bcu^2 - acv^2 = n$ exist if and only if the quadratic form $abt^2 - bcu^2 - acv^2 - nw^2$ represents 0 in \mathbb{Q}. The latter representation is a classical problem with a known solution—see [2, p. 75], noting that by a simple change of variables, we may assume the coefficients of $abt^2 - bcu^2 - acv^2 - nw^2$ are square-free integers, no three having a factor in common.

Proof of Theorem 1. (\Leftarrow) Suppose there exist $t_0, u_0, v_0 \in \mathbb{Q}$ with $abt_0^2 - bcu_0^2 - acv_0^2 = n$.

Case I. Suppose $bu_0 + av_0 = 0$. Then $abt_0^2 = n$.

Let $x = ((b-c)/2abt_0)\sqrt{(-n)}$, $y = (b+c)/2b$.

Case II. Suppose $bu_0 + av_0 \neq 0$.

Let $x = (1/d)(bt_0u_0 + v_0\sqrt{(-n)})$, $y = (1/d)(at_0v_0 - u_0\sqrt{(-n)})$, where $d = bu_0^2 + av_0^2$.

In either case, an easy calculation shows that $ax^2 + by^2 = c$.

(\Rightarrow) Suppose $ax_0^2 + by_0^2 = c$, where $x_0 = r + s\sqrt{(-n)}$, $y_0 = p + q\sqrt{(-n)}$.

Presented to the Society, January 18, 1972 under the title The solutions of the equation $ax^2 + by^2 = c$ in quadratic fields; received by the editors September 30, 1971.

AMS 1970 subject classifications. Primary 10B05, 10B35, 10C05, 12A25; Secondary 10J05.

Key words and phrases. Diophantine equations, quadratic fields, quadratic forms.

© American Mathematical Society 1972

337
Then
\[c = a(r + s\sqrt{(-n)})^2 + b(p + q\sqrt{(-n)})^2 = (ar^2 - ans^2 + bp^2 - bnq^2) + (2ars + 2bpq)s\sqrt{(-n)}. \]

Therefore \(ars + bpq = 0. \)

Case I. Suppose \(q = 0. \) Then \(c = ar^2 - ans^2 + bp^2, \) and also \(ars = 0, \) so either \(r \) or \(s = 0. \) If \(s = 0, \) we have \(c = ar^2 + bp^2. \) Upon multiplying by \(abc, \) this yields \(abc^2 = bca^2r^2 + acb^2p^2, \) which may be rewritten \(ab(c^2 - bc(ar)^2 - ac(bp)^2) = 0; \) i.e. the quadratic form \(abt^2 - bcu^2 - acv^2 \) represents 0 in \(Q. \)

By a well-known result [2, p. 41], \(abt^2 - bcu^2 - acv^2 \) also represents \(n \) in \(Q. \) If \(r = 0, \) \(s \neq 0, \) then \(c = bp^2 - ans^2, \) so \(n = (bp^2 - c)/as^2, \) which may be rewritten in the form \(n = ab(p/as)^2 - ac(1/as)^2 - bc(0)^2, \) which is a rational solution of \(n = abt^2 - bcu^2 - acv^2. \)

Case II. Suppose \(q \neq 0. \) Then \(p = -ars/bq. \) Therefore
\[c = ar^2 - ans^2 + b(ars/bq)^2 - bnq^2. \]

Solving for \(n, \) we get
\[n = \frac{1}{as^2 + bq^2} \left(ar^2 + \frac{a^2r^2s^2}{bq^2} - c \right) = \frac{ar^2}{bq^2} - \frac{c}{as^2 + bq^2}, \]
\[= ab \left(\frac{r}{bq} \right)^2 - ac \left(\frac{s}{as^2 + bq^2} \right)^2 - bc \left(\frac{q}{as^2 + bq^2} \right)^2, \]
a rational solution of \(n = abt^2 - bcu^2 - acv^2. \)

Note that \(c \neq 0 \Rightarrow as^2 + bq^2 \neq 0 \) (from (')). This completes the proof.

As an interesting special case, we get the following result of Fein and Gordon [1, Theorem 7].

Corollary 1. \(x^2 + y^2 = -1 \) may be solved in \(Q(\sqrt{-n}), n \) a square-free integer, if and only if \(n > 0 \) and \(n \neq 7 \) (mod 8).

Proof. Take \(a = b = -c = 1 \) in the theorem. We find that there are solutions in \(Q(\sqrt{-n}) \) if and only if \(n \) is the sum of three squares, \(r^2 + u^2 + v^2, \) in \(Q. \) By clearing denominators, we see that this occurs if and only if \(nw^2 = t_1^2 + u_1^2 + v_1^2, \) where \(t_1, u_1, v_1, w \) are integers. But it is well known that this is true if and only if \(nw^2 \) is not of the form \(4^i(8j + 7), \) i.e. if and only if \(n \) (being square-free) is not congruent to 7 (mod 8).

II. In [3, p. 118], L. J. Mordell showed that \(ax^2 + by^2 = c \) has algebraic integer solutions in precisely the quadratic fields:
\[A: Q(\sqrt{(-abk^2)/d^2 - c/d}), \]
where \(d|abc, \) \(p \) and \(q \) are integers such that \(ap^2 + bq^2 = d, (ap, bq) = d_1, \) and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
1972] SOLVABILITY OF AN EQUATION IN QUADRATIC FIELDS 339

k is any integer making the radicand an integer, and

$$B: \mathbb{Q}(\sqrt{-(abc^2/d_1^2 - 4c/d)})$$

where $d|2abc$, p, q, and d_1 are as above, and k is any integer such that $\frac{1}{4} + (abk^2/4d_1^2) - c/d$ is an integer.

In this section we show that the result of Theorem 1 is distinct from that of Mordell, i.e. there exists a field $\mathbb{Q}(\sqrt{(-n)})$ in which $x^2+y^2=-1$ has solutions but no algebraic integer solutions.

We have $a=b=-c=1$. In case A, $d=1$, so $p=0$ or 1, $q=1$ or 0, and $d_1=1$. Therefore there are algebraic integer solutions in the field $\mathbb{Q}(\sqrt{(-k^2+1)})$, any integer k. In case B, $d=2$, $p=q=d_1=1$, and so there are algebraic integer solutions in any field $\mathbb{Q}(\sqrt{-(k^2+2)})$, k odd. These are all.

In the field $\mathbb{Q}(\sqrt{-6})$, $x=(2+\sqrt{-6})/2$, $y=(2-\sqrt{-6})/2$ is a solution of $x^2+y^2=-1$. However, $\mathbb{Q}(\sqrt{-6})$ is neither of the form $\mathbb{Q}(\sqrt{-(k^2+1)})$, k an integer, nor $\mathbb{Q}(\sqrt{-(k^2+2)})$, k odd. For suppose $\mathbb{Q}(\sqrt{(-6)})=\mathbb{Q}(\sqrt{-(k^2+1)})$. Then $k^2+1=6j^2$, some integer j. It is easy to see there are no such k, j by considering the equation mod 8. Now suppose $\mathbb{Q}(\sqrt{(-6)})=\mathbb{Q}(\sqrt{-(k^2+2)})$, k odd. Therefore $k^2+2=6j^2$. Since k is odd, we again get a contradiction mod 8.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NEW YORK 13210