Local triviality of fiberings
HTML articles powered by AMS MathViewer
- by Soon-kyu Kim
- Proc. Amer. Math. Soc. 34 (1972), 546-552
- DOI: https://doi.org/10.1090/S0002-9939-1972-0298662-8
- PDF | Request permission
Abstract:
We prove that a Hurewicz fibering or a Serre fibering is locally trivial if the total space is a connected separable metric ANR n-gm over a principal ideal domain and the base space is a weakly locally contractible paracompact finite dimensional space, and all fibers are homeomorphic to a space which is a connected 3-manifold with exactly one end and whose one point compactification is a 3-manifold and it has no false 3-cells, in particular a euclidean 3-space.References
- J. W. Alexander, On the deformation of an h-cell, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 406-407.
- E. Dyer and M.-E. Hamstrom, Completely regular mappings, Fund. Math. 45 (1958), 103–118. MR 92959, DOI 10.4064/fm-45-1-103-118
- Edward Fadell, On fiber spaces, Trans. Amer. Math. Soc. 90 (1959), 1–14. MR 101520, DOI 10.1090/S0002-9947-1959-0101520-0
- Mary-Elizabeth Hamstrom, Regular mappings and the space of homeomorphisms on a $3$-manifold, Mem. Amer. Math. Soc. 40 (1961), 42. MR 152999
- Mary-Elizabeth Hamstrom and Eldon Dyer, Regular mappings and the space of homeomorphisms on a 2-manifold, Duke Math. J. 25 (1958), 521–531. MR 96202
- Soon-kyu Kim, Local triviality of Hurewicz fiber maps, Trans. Amer. Math. Soc. 135 (1969), 51–67. MR 233357, DOI 10.1090/S0002-9947-1969-0233357-2
- Soon-kyu Kim, Local triviality of completely regular mappings, Duke Math. J. 38 (1971), 467–471. MR 286132 S. L. Langston, Replacement and extension theorems in the theory of Hurewicz fiber spaces, Thesis, University of Wisconsin, Madison, Wis., 1968.
- L. F. McAuley and P. A. Tulley, Fiber spaces and $n$-regularity, Topology Seminar (Wisconsin, 1965) Ann. of Math. Studies, No. 60, Princeton Univ. Press, Princeton, N.J., 1966, pp. 229–233. MR 0216503
- Frank Raymond, Local triviality for Hurewicz fiberings of manifolds, Topology 3 (1965), 43–57. MR 159337, DOI 10.1016/0040-9383(65)90069-8
- Frank Raymond, The end point compactification of manifolds, Pacific J. Math. 10 (1960), 947–963. MR 120637 S. B. Seidman, Completely regular mappings, Thesis, University of Michigan, Ann Arbor, Mich., 1969.
- Gerald S. Ungar, Conditions for a mapping to have the slicing structure property, Pacific J. Math. 30 (1969), 549–553. MR 250311
- Raymond Louis Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, Vol. 32, American Mathematical Society, New York, N. Y., 1949. MR 0029491
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 546-552
- MSC: Primary 55F05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0298662-8
- MathSciNet review: 0298662