ON MODULAR COMPLEMENTED AND ANNIHILATOR ALGEBRAS

T. HUSAIN¹ AND PAK-KEN WONG²

Abstract. Let A be a modular complemented algebra. We give some necessary and sufficient conditions for some special classes of algebras A to be annihilator or dual algebras.

1. Introduction. Modular complemented algebras were introduced by Yood in [7], where he developed a structure and ideal theory for these algebras. In this paper our aim is to investigate the relationship among modular complemented, annihilator and dual algebras.

Let A be a modular complemented algebra. We show that if $I + I^\perp = A$ for all minimal (left, right) ideals I of A, then A is an annihilator algebra if and only if every nonzero left ideal of A contains an element with right adjoint. If $J + J^\perp = A$ for all (left, right) ideals J of A, and A is a left or right annihilator algebra, then it is a dual algebra.

2. Notation and preliminaries. Let A be an algebra over the complex field C which is a pre-Hilbert space in the inner product (x, y). A is called a right-modular complemented algebra if it satisfies the following conditions:

(a) the product xy is continuous in each variable separately,
(b) every right or left ideal I for which $I^\perp = (0)$ is dense in A,
(c) the intersection of all closed modular maximal right ideals is (0) and M^\perp is a right ideal for each closed modular maximal right ideal M.

Remark. From (c) it follows that every right-modular complemented algebra is semisimple.

Similarly we define a left-modular complemented algebra. It has been shown [7] that an algebra A is right-modular complemented if and only

¹ This work was supported by a N.R.C. grant.
² The second author was supported by a postdoctoral fellowship at McMaster University.

Received by the editors July 19, 1971.

AMS 1969 subject classifications. Primary 4650; Secondary 4655.

Key words and phrases. Modular complemented algebra, annihilator algebra, dual algebra, Hilbert algebra, proper H^*-algebra.
if it is left-modular complemented. In this case, \(K^\perp \) is a right (left) ideal for any right (left) ideal \(K \) of \(A \) (see [7, p. 262, Theorem 2.1]).

Let \(A \) be an algebra which is a pre-Hilbert space. As in [7], we say that \(u^l \) is a left adjoint for \(u \) if \((ux, y) = (x, u^l y)\) for all \(x, y \in A \). If \(A \) is semi-simple, then the left adjoint is unique if it exists. Let \(u, v \in A \). If \(u^l, v^l \)
eq 0 exists then \((uv)^l\) exists and \((uv)^l = v^l u^l\). If \(u = u^l \), then \(u \) is said to be left selfadjoint. Similarly \(u^r \) is called the right adjoint if \((xu, y) = (x, yu^r)\) for all \(x, y \in A \).

For any subset \(E \) in an algebra \(A \), let \(L(E) \) (\(R(E) \)) denote the left (right) annihilator of \(E \) in \(A \). Suppose \(A \) is a topological algebra then we call \(A \) an annihilator algebra provided that, for every closed left ideal \(M \) and for every closed right ideal \(N \), we have \(R(M) = (0) \) if and only if \(M = A \) and \(L(N) = (0) \) if and only if \(N = A \). If \(M = L(R(M)) \) and \(N = R(L(N)) \), then \(A \) is called a dual algebra.

In this paper, all algebras and linear spaces are over the complex field \(C \). The results of this paper heavily depend on [6] and [7].

3. Characterizations of annihilator and dual algebras. It is known that a modular complemented algebra need not be an annihilator algebra (see [7, p. 263]). In our first result, we give a characterization for annihilator modular complemented algebras.

Let \(A \) be a topological algebra. Then \(A \) is called a left annihilator algebra if for every closed right ideal \(M \) of \(A \), \(L(M)^\perp = (0) \) and \(L(A) = (0) \). Similarly we define a right annihilator algebra.

Theorem 3.1. Let \(A \) be a modular complemented algebra such that \(I^\perp \cap I^\perp = A \) for all minimal (left, right) ideals \(I \) of \(A \). Then the following statements are equivalent:

(i) \(A \) is an annihilator algebra.
(ii) \(A \) is a right annihilator algebra.
(iii) Every element of the socle \(S \) of \(A \) has a right adjoint.
(iv) Every nonzero left ideal of \(A \) contains an element with right adjoint.

Proof. (i)\(\Rightarrow \) (ii). This is clear.

(ii)\(\Rightarrow \) (iii). Suppose \(A \) is a right annihilator algebra. Let \(I \) be a minimal left ideal of \(A \). Since \(A = I \oplus I^\perp \), it follows easily that \(I^\perp \) is a maximal closed left ideal. Thus by [1, p. 568, Theorem 3.4], \(I^\perp \) is a modular maximal left ideal. Hence by the proof of [6, p. 44, Theorem 4.5] each element of \(I \) has a right adjoint and so does \(S \).

(iii)\(\Rightarrow \) (iv). Let \(M \) be a nonzero left ideal of \(A \). Since \(S \) is dense in \(A \) (see the proof of [7, p. 262, Theorem 2.1]), we have \(S \cap M \neq (0) \). Therefore (iv) follows from (iii).
(iv)⇒(ii). Assume (iv). Let T be the set given in the proof of [7, p. 262, Theorem 2.1]. Then T is a dense right ideal of A and each element in T has a left adjoint. Let J be a proper closed left ideal of A. Then $J\parallel_A(0)$. Let x be an element in $J\parallel_A$ which has a right adjoint x^\ast. Let $z \in J$ and $y \in T$. Then $(yx, z) = (x, y^\ast z) = 0$. Since T is dense in A, we have $(Ax, z) = (0)$ and so $(A, zx^\ast) = (0)$ which gives $zx^\ast = 0$. Hence $Jx^\ast = 0$ and so $R(J)\parallel_A(0)$. Therefore A is a right annihilator algebra.

(ii)⇒(i). Suppose (ii) holds. Let I be a minimal left ideal of A. By the argument in (ii)⇒(iii), $I\parallel_A$ is a modular maximal left ideal. Hence by the proof of [7, p. 263, Theorem 2.3], each element of I has a left adjoint and so does S. Hence by a similar argument in the proof (iv)⇒(ii), we can show that A is a left annihilator algebra. This completes the proof of the theorem.

Remark. A similar form of Theorem 3.1 holds for left annihilator algebras.

Theorem 3.2. Let A be a modular complemented algebra such that $J\otimes I\parallel_A A$ for all closed (left, right) ideals J of A. Then the following statements are equivalent:

(i) A is a dual algebra.

(ii) A is a left or right annihilator algebra.

Proof. (i)⇒(ii). This is clear. (ii)⇒(i). Assume (ii). Then by Theorem 3.1 and its remark, A is an annihilator algebra. Let I be a proper closed right ideal of A. Since $I\parallel_A(0)$ and since the socle of A is dense in A, it follows that $I\parallel_A$ contains a minimal right ideal J. By the proof of Theorem 3.1, $J\parallel_A$ is a closed modular maximal right ideal and clearly $I\parallel_J I$. Let $\{M_\lambda: \lambda \in \Lambda\}$ be the family of all closed modular maximal right ideals of A containing I. Then $\{M_\lambda: \lambda \in \Lambda\}$ is not empty. Let $M = \bigcap \{M_\lambda: \lambda \in \Lambda\}$. We claim that $M = I$. In fact, suppose this is not so. Then there exists an element $x \in M$ such that $x \notin I$. Since $I\oplus I\parallel_A = A$, we can write $x = x_1 + x_2$ with $x_1 \in I$ and $x_2 \in I\parallel_A$. Hence $x_2 = x - x_1 \in I\parallel_A \cap M$ and so $I\parallel_A \cap M$ contains a minimal right ideal J whose orthogonal complement $J\parallel_A$ is a closed modular maximal right ideal by the above argument. Therefore by the proof of [6, p. 44, Theorem 4.5], J, and hence $I\parallel_A \cap M$, contains a left selfadjoint minimal idempotent e. Since $eA \subset I\parallel_A$, we have $(1-e)A = (eA)\parallel_A I$. Therefore $(1-e)A \supset M$. But $e \in M$, a contradiction. Hence $M = I$. Since each $M_\lambda = R(L(M_\lambda))$, we have $I = R(L(I))$. Similarly we can show that $N = L(R(N))$ for all closed left ideals N of A. Therefore A is a dual algebra. This completes the proof.

A modular complemented algebra is said to be complete if it is complete in its inner product norm.
COROLLARY 3.3. Let A be a complete modular complemented algebra. Then the conditions (i), (ii), (iii) and (iv) in Theorem 3.1 are equivalent to the statement that A is a dual algebra.

PROOF. This follows from Theorems 3.1 and 3.2.

REMARK. It is well known that a proper H^*-algebra A is dual. This result also follows from Corollary 3.3, since every element of A has left and right adjoints.

If a modular complemented algebra is a normed algebra under its inner product norm, then we say that it is a normed modular complemented algebra.

THEOREM 3.4. Let A be a complete normed modular complemented algebra. Then

(i) A is a dense left ideal of a dual B^*-algebra B.

(ii) If A is also a right ideal of B, then A is a dual algebra.

PROOF. (i) For each $x \in A$, let U_x be the operation of left multiplication by x and $|U_x|$ the operator bound of U_x. Let B be the closure of $\{U_x : x \in A\}$ in the uniform topology. Since A is semisimple, the mapping $x \rightarrow U_x$ is one-one. Therefore we can identify A as a subalgebra of B. Let T be the algebraic sum of the M^+ as M ranges over the set of all closed modular maximal right ideals of A. By the proof of [6, p. 44, Theorem 4.5], T is dense in A, the left adjoint a' exists for all $a \in T$ and $a' \in T$. Clearly $U_{a'}=(U_a)^*$ and so $T^*=T$ in B. Since T is dense in B, it follows that $B=B^*$. Therefore B is a B^*-algebra. Since the socle of B contains T, it follows from [4, p. 222, Theorem 2.1] that B is a dual algebra. For all $x, y \in A$, we have $\|xy\| \leq \|x\| \|y\|$. This shows that A is a left ideal of B and completes the proof of (i).

(ii) Now it follows from (i) that A is a dense two-sided ideal of B. For example, a proper H^*-algebra has such a property. Let M be a non-zero right ideal of A. Then M contains a minimal idempotent e of A. It is clear that $eB=eA$ and so eA is a minimal right ideal of B. Hence by [5, p. 261, Lemma (4.10.1)], eA contains a hermitian minimal idempotent $f \in B$. It is easy to see that $f \in A$ and f is a left selfadjoint element in A. Since $f \in M$, it follows from Corollary 3.3 that A is a dual algebra.

4. Hilbert algebras. A complex algebra A is called a Hilbert algebra (see [3]) if it is a pre-Hilbert space with an involution $x \rightarrow x^*$ having the following properties:

(a) $(xy, z)=(y, x^*z)$ for all $x, y, z \in A$,

(b) $(x, y)=(y^*, x^*)$ for all $x, y \in A$.
(c) the operation of left multiplication $y \mapsto xy$ is continuous on A for each $x \in A$,
(d) the set of elements of the form xy is dense in A.
It follows easily from (a) and (b) that $(yx, z) = (y, zx^*)$ for all $x, y, z \in A$. It is easy to see that the right multiplication is also continuous. Since $\|x\| = \|x^*\|$, the involution is continuous.

A net $\{e_\alpha\}$ in a normed algebra A is called an approximate identity if it is bounded and $x = \lim \alpha e_\alpha = \lim \alpha x e_\alpha$ for all $x \in A$.

The following result was proved by Yood for B^*-algebras (see [7, p. 267, Theorem 3.1]).

Theorem 4.1. Let A be an infinite-dimensional Banach *-algebra with an approximate identity $\{e_\alpha\}$. Then there does not exist an inner product for A under which A becomes a pre-H^*-algebra with the same involution.

Proof. Suppose otherwise. Let $|x| = (x, x)^{1/2}$ be the inner product norm and let H be the completion of A in the norm $|x|$. By the proof of [7, p. 267, Theorem 3.1], H is a proper H^*-algebra and, for all $x \in A$, $|x| \leq k\|x\|$, where k is a constant. Now it is easy to see that $\{e_\alpha\}$ is also an approximate identity in H. Since H is reflexive, by [2, p. 855, Lemma 3.8], H has an identity. Therefore by [7, p. 266, Corollary 2.7], H is finite dimensional and so A, a contradiction. This completes the proof.

Theorem 4.2. Let A be a Hilbert algebra. Then A is a dual algebra if and only if $I = I^{\perp\perp}$ for all closed right ideals I of A.

Proof. By the proof of [7, p. 268, Lemma 3.2], $x \in xA \cap Ax$. Therefore $L(A) = R(A) = (0)$. Suppose A is a dual algebra. Let I be a closed right ideal of A. Then by the proof of [7, p. 268, Lemma 3.2], we have

$$I = R(L(I)) = ((I^{\perp\perp})^{**})^{\perp\perp} = I^{\perp\perp}.$$

Conversely suppose $I = I^{\perp\perp}$ for all closed right ideals I of A. It is easy to see that $I^{\perp\perp} = R(L(I)) = I$. Let J be a closed right ideal of A. Hence $J^\perp = (J^\perp)^\perp$ and so $J = J^{\perp\perp}$. It is now easy to see that $J = L(R(J))$. Therefore A is a dual algebra.

Corollary 4.3. Let A be a Hilbert algebra. If $I \otimes I = A$ for all closed right ideals I of A, then A is a dual algebra.

References

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

DEPARTMENT OF MATHEMATICS, McMaster University, Hamilton, Ontario, Canada