PERMUTABLE PRONORMAL SUBGROUPS

TI YEN

Abstract. Let G be a finite solvable group. It is shown that a certain class of pronormal subgroups reducing a given Sylow system is a lattice of permutable subgroups.

All groups considered here are finite solvable. A subgroup V of a group G is said to be p-normally embedded in G if a Sylow p-subgroup P of V is also a Sylow subgroup of P^G. A subgroup V of G is said to be normally embedded in G if it is p-normally embedded for every prime p. A normally embedded subgroup is necessarily pronormal [1, Theorem 2.3]. We prove the following two theorems:

Theorem 1. A p-subgroup P of G is a Sylow subgroup of P^G if it is a Sylow subgroup of $\langle P, P^x \rangle$ for every $x \in G$.

Theorem 2. Let Σ be a Sylow system of the group G. Then the set of normally embedded subgroups reducing Σ is a lattice of permutable subgroups.

A Sylow system [2] is a complete set of permutable Hall subgroups. A Sylow system Σ of G is said to reduce into a subgroup U if $\{U \cap H | H \in \Sigma\}$ is a Sylow system of U.

Proof of Theorem 1. We proceed by induction on the order $|G|$. Let A be a minimal normal subgroup of G. Since PA/A satisfies the hypothesis in G/A, PA/A is a Sylow p-subgroup of $(PA)^G/A = P^G A/A$. Therefore we may assume that $O_p(G) = 1$ and $core(P) = 1$. Then PA is a Sylow subgroup of $H = P^G A$.

Case 1. $H \neq G$. Then P is a Sylow subgroup of $N = P^H$. Since P is a pronormal subgroup of G and a subnormal subgroup of $N_G(PA)$, $N_G(P) \supseteq N_G(PA)$. Then $G = H \cdot N_G(PA) = H \cdot N_G(P)$ and $core(N) = \bigcap_{x \in G} N^x = \bigcap_{x \in N_G(P)} N^x \supseteq P$. Hence P is a Sylow subgroup of a normal subgroup of G.

Case 2. $H = G$. Since P is a Sylow subgroup of $\langle P, P^x \rangle$, $A \cap \langle P, P^x \rangle = A \cap P \cap P^x$. Therefore $A \cap P = A \cap core(P) = 1$. Hence A lies in the center of

Received by the editors September 30, 1971.

AMS 1969 subject classifications. Primary 2040; Secondary 2058.

Key words and phrases. Pronormal subgroups, permutable subgroups, Sylow systems.
PA and, by a theorem of Gaschütz [4, Hauptsatz 17.4, p. 121], A is complemented by a subgroup K. Let $Q = PA \cap K$. Since A lies in the center of PA, $\text{core}(K) = \bigcap_{a \in A} K = Q$. Then $A \cdot \text{core}(K) \subseteq (PA)^G = G$ so that $K = \text{core}(K)$ and A lies in the center of G. Let B be a minimal normal subgroup of G contained in K. Similarly, B is a p-subgroup lying in the center of G. Then $\text{core}(P) \supseteq AB \cap P \neq 1$. This proves the theorem.

Proof of Theorem 2. (1) Let U, V be normally embedded permutable subgroups of G. Then UV and $U \cap V$ are normally embedded. By a theorem of Wielandt [4, Satz, 4.6, p. 676], there are Sylow p-subgroups P, Q of U, V respectively such that PQ is a Sylow subgroup of UV. Since $|UV|/|PQ| = (|U|/|P|)(|V|/|Q|)(|P \cap Q|/|U \cap V|)$ is a p'-number, $P \cap Q$ is a Sylow subgroup of $U \cap V$. On the other hand, $P \cap Q = P \cap (PQ \cap Q^G) = P \cap (P^G \cap Q^G)$ is a Sylow subgroup of $P^G \cap Q^G$. Thus $U \cap V$ is p-normally embedded.

(2) If a Sylow system Σ of G reduces to permutable subgroups U and V then Σ reduces into $U \cap V$ and UV. That Σ reduces into $U \cap V$ is due to Shamash as quoted in [5, Lemma 2, p. 230]. Let P be a Sylow p-subgroup of G belonging to Σ. Then $P \cap U$ and $P \cap V$ are Sylow subgroups of U and V respectively. Since Σ reduces to $U \cap V$, $|U \cap V|/|P \cap U \cap V|$ is a p'-number. It follows that

$$|UV|/|P \cap U \cap V|$$

is a p'-number. Hence $(P \cap U)(P \cap V) = P \cap UV$ is a Sylow p-subgroup of U. V.

(3) Let U, V be normally embedded subgroups of the group G. If U and V reduce a Sylow system Σ, then U and V are permutable. We use induction on the order $|G|$. Let A be a minimal normal subgroup of G. Then UA/A and VA/A permute. Then U and V permute. Since Σ reduces into UVA, $G = UVA$. Let p be the prime dividing $|A|$. Suppose that G has a normal p'-subgroup B. Then U and VB permute and $G = UBV$. Let P be the Sylow p-subgroup of G belong to Σ. Then $P = (P \cap U)(P \cap VB) = (P \cap U)(P \cap V) \subseteq UV$, so that $G = UV$. Therefore we may assume that $O_p'(G) = 1$. If p does not divide $|UV|$, then UV is the Sylow p-complement of G belonging to Σ. Therefore we may assume that p divides the order $|U|$. Then $O_p(G) \cap (P \cap U)^G$ is a nonidentity normal subgroup of G contained in $P \cap U$. Replace A by $O_p(G) \cap (P \cap U)^G$; we get $G = UV$.

References

Department of Mathematics, Michigan State University, East Lansing, Michigan 48823