Permutable pronormal subgroups
HTML articles powered by AMS MathViewer
- by Ti Yen
- Proc. Amer. Math. Soc. 34 (1972), 340-342
- DOI: https://doi.org/10.1090/S0002-9939-1972-0311788-5
- PDF | Request permission
Abstract:
Let G be a finite solvable group. It is shown that a certain class of pronormal subgroups reducing a given Sylow system is a lattice of permutable subgroups.References
- Graham A. Chambers, $p$-normally embedded subgroups of finite soluble groups, J. Algebra 16 (1970), 442–455. MR 268275, DOI 10.1016/0021-8693(70)90018-9 P. Hall, On the Sylow system of a soluble group, Proc. London Math. Soc. (2) 43 (1937), 316-323.
- B. Hartley, On Fischer’s dualization of formation theory, Proc. London Math. Soc. (3) 19 (1969), 193–207. MR 244381, DOI 10.1112/plms/s3-19.2.193
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- Avino’am Mann, ${\mathfrak {h}}$ normalizers of finite solvable groups, J. Algebra 14 (1970), 312–325. MR 254144, DOI 10.1016/0021-8693(70)90107-9
- John S. Rose, Finite soluble groups with pronormal system normalizers, Proc. London Math. Soc. (3) 17 (1967), 447–469. MR 212092, DOI 10.1112/plms/s3-17.3.447
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 34 (1972), 340-342
- MSC: Primary 20F30
- DOI: https://doi.org/10.1090/S0002-9939-1972-0311788-5
- MathSciNet review: 0311788