A CHARACTERIZATION OF STRONGLY MEASURABLE PETTIS INTEGRABLE FUNCTIONS

J. J. UHL, JR.1

Abstract. Theorem. Let X be a Banach space and (Ω, Σ, μ) be a finite measure space. A strongly measurable $f: \Omega \to X$ is Pettis integrable if and only if there exists a Young’s function Φ with $\lim_{t \to \infty} \Phi(t)/t = \infty$ such that $x^*f \in L^\Phi(\mu)$ for all $x^* \in X^*$.

In 1969, Brooks [1] gave a characterization of strongly measurable Pettis integrable functions by use of the Orlicz-Pettis theorem. The purpose of this note is to give another characterization in terms of Orlicz spaces. Throughout this note X is a Banach space with continuous dual X^*. (Ω, Σ, μ) is a fixed finite measure space. $f: \Omega \to X$ is called strongly measurable if it is the μ-almost everywhere limit of simple functions of the form $\sum_{i=1}^n x_i \chi_{E_i}$ where $x_i \in X$, $E_i \in \Sigma$ and χ_{E_i} is the characteristic or indicator function of E_i. A strongly measurable $f: \Omega \to X$ is called Pettis integrable if $x^*f \in L^1(\mu)$ for all $x^* \in X^*$ and for each $E \in \Sigma$ there is $x_E \in X$ satisfying $x^*(x_E) = \int_E x^*f \, d\mu$ for all $x^* \in X^*$. A Young’s function is an increasing convex function Φ defined on $[0, \infty)$ such that $\Phi(0) = 0$. The Orlicz space $L^\Phi(\mu)$ is the space of all (equivalence classes of) functions f such that $\int_{\Omega} \Phi(|f|/k) \, d\mu < \infty$ for some $k > 0$.

The following theorem gives the promised characterization of Pettis integrable strongly measurable functions. In a sense this theorem is an analogue of LaVallée Poussin’s theorem for vector valued functions.

Theorem. Let $f: \Omega \to X$ be strongly measurable, f is Pettis integrable with respect to μ if and only if there exists a Young’s function Φ such that

(i) $\lim_{t \to \infty} \Phi(t)/t = + \infty$, and

(ii) $x^*f \in L^\Phi(\mu)$ for each $x^* \in X^*$.

Proof (Sufficiency). Suppose $x^*f \in L^\Phi(\mu)$ for all $x^* \in X^*$. Then if $T: X^* \to L^\Phi(\mu)$ is defined by $T(x^*) = x^*f$, T is linear. Furthermore T is closed since if $x_n^* \to x^*$ in X^* and $T(x_n^*) \to g$ in $L^\Phi(\mu)$ norm, then $x^*f = g$ a.e. $[\mu]$ because $x_n^*f \to x^*f = g$ pointwise almost everywhere. According to Banach’s closed graph theorem, T is continuous. Hence if $g \in L^\Psi$ where Ψ is

Received by the editors July 6, 1971.

AMS 1969 subject classifications, Primary 2850, 3035.

1 Supported in part by National Science Foundation grant GP-28577.

© American Mathematical Society 1972

425
complementary to Φ, and $S(g)$ is defined on \mathcal{X}^* by
\[
S(g)(x^*) = \int_{\Omega} g x^* f \, d\mu, \quad x^* \in \mathcal{X}^*,
\]
then S is linear in g. Moreover for $x^* \in \mathcal{X}^*$,
\[
|S(g)(x^*)| = \left| \int_{\Omega} g x^* f \, d\mu \right| \leq \|g\|_V \|x^* f\|_\Phi \leq \|g\|_V \|x^*\| \|T\|.
\]
Hence $S(g) \in \mathcal{X}^{**}$ and $S(g)$ is the “Gelfand” integral of gf.

Next we shall show that S actually maps bounded functions in L^Ψ into the closed subspace Φ of \mathcal{X}^{**}. To this end, set $E_n = \{\omega: \|f(\omega)\| \leq n\}$. If g is supported in one of the E_n’s, say E_{n_0}, consider
\[
S(g)(x^*) = \int_{\Omega} g x^* f \, d\mu, \quad x^* \in \mathcal{X}^*.
\]
Since f is bounded on E_{n_0}, gf is actually Bochner integrable. Hence
\[
S(g)(x^*) = x^* \left(\text{Bochner} - \int_{\Omega} gf \, d\mu \right);
\]
i.e. $S(g) = \text{Bochner} - \int_{\Omega} gf \, d\mu$ for g supported inside one of the E_n’s. Now condition (i) implies $\Psi(t) < \infty$ when $t < \infty$. Hence by [4, Theorem 10.3, p. 87], $\lim_{\mu(E_n) \to 0} \|g\chi_{E_n}\|_\Psi = 0$ for all g in the closed subspace of L^Ψ determined by the simple functions. Since $E_n \uparrow \Omega$, the continuity of S implies $S(g) = \lim_n S(g\chi_{E_n})$ strongly in \mathcal{X}^{**} for all g in the closed subspace of L^Ψ determined by the simple functions. In particular, $S(\chi_E) = \lim_n S(\chi_{E \cap E_n}) = \lim_n \text{Bochner} - \int_{\Omega} \chi_{E \cap E_n} f \, d\mu \in \mathcal{X}$. Hence $S(\chi_E)(x^*) = \int_{\Omega} \chi_{E \cap E_n} f \, d\mu$ and f is Pettis integrable.

(Necessity). Suppose f is Pettis integrable. By a theorem of Pettis [6, Corollary 2.51, p. 284], $\lim_{\mu(E_n) \to 0} \int_{E_n} |x^* f| \, d\mu = 0$ uniformly for x^* in the unit ball of \mathcal{X}^*. Also $\sup_{\|x^*\| \leq 1} \|x^* f\|_{L^1} < \infty$. An appeal to LaVallée Poussin’s theorem [5, Theorem 22, p. 19] establishes the existence of a convex function Φ defined on $[0, \infty)$ which is nonnegative, increasing, convex and satisfying $\lim_{t \to \infty} \Phi(t)/t = +\infty$ such that
\[
\sup_{\|x^*\| \leq 1} \int_{\Omega} \Phi(|x^* f|) \, d\mu < \infty.
\]
By setting $\Phi_1(t) = \Phi(t) - \Phi(0)$, one finds that Φ_1 is a Young’s function satisfying (i) and $x^* f \in L^{\Phi_1}(\mu)$ for all $x^* \in \mathcal{X}^*$. This completes the proof of the theorem.
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801