PERMANENT GROUPS

LEROY B. BEASLEY AND LARRY CUMMINGS

Abstract. A permanent group is a group of nonsingular matrices on which the permanent function is multiplicative. Let $A \circ B$ denote the Hadamard product of matrices A and B. The set of groups G of nonsingular $n \times n$ matrices which contain the diagonal group D and such that for every pair A, B of matrices in G we have $A \circ B^T \in D$ is denoted by \mathcal{A}_n. If the underlying field has at least three elements then \mathcal{A}_n consists of permanent groups. A partial converse is available: If a permanent group G is generated by D together with a set S of elementary matrices and a set Q of permutation matrices then $G = HK$ where H is the subgroup generated by Q and K is generated by D and S, and $K \in \mathcal{A}_n$.

1. Introduction. A group of nonsingular matrices on which the permanent function is multiplicative will be called a permanent group. In this paper we determine a large class of permanent groups.

It was conjectured by Marcus and Minc [2] that Δ_n, the group of $n \times n$ nonsingular matrices of the form PD is a maximal permanent group, where P is any permutation matrix and D is diagonal. The underlying field was unspecified in [2] and the conjecture was subsequently verified by the first author for the complex numbers [1]. Contrary to the assertion in [1], however, this is not the only maximal permanent group.

Let $A \circ B$ denote the Hadamard product of matrices A and B. We shall denote by $\mathcal{A}_n(F)$ the collection of all groups G of $n \times n$ nonsingular matrices over a field F such that:

(a) G contains the set of all $n \times n$ nonsingular diagonal matrices;
(b) if A and B are in G then $A \circ B^T$ is a nonsingular diagonal matrix.

In Theorem 3.1 we will show that $\mathcal{A}_n(F)$ consists of permanent groups if F has more than 2 elements. However, Δ_n is not in $\mathcal{A}_n(F)$.

The matrix E_{ij} has (i, j) entry 1 and zeros elsewhere. We will use elementary matrices $I + \lambda E_{ij}$, where λ is a field element, I the identity matrix, and $i \neq j$ for $i, j = 1, \ldots, n$. For any matrix A, $r_i(A)$ will denote...
the number of nonzero elements in row i. If row i and column i are deleted from a matrix A the resulting matrix is denoted by $A(i|i)$.

2. Properties of $\mathcal{A}_n(F)$. We remark that $\mathcal{A}_n(F)$ contains both the permanent group of nonsingular upper triangular matrices and the permanent group of nonsingular lower triangular matrices. A less obvious permanent group is obtained by considering $n \times n$ upper triangular matrices (a_{ij}) over any field which satisfy the additional restrictions:

$$
\begin{align*}
a_{\alpha m} &= 0, & m &= \alpha + 1, \cdots, \beta, \\
a_{m\beta} &= 0, & m &= \alpha + 1, \cdots, \beta - 1,
\end{align*}
$$

for distinct integers α, β such that $1 \leq \alpha < \beta \leq n$.

If P is the permutation matrix corresponding to the transposition $(\alpha \beta)$ and H the group $\{I, P\}$ then the set $H \cdot K$ can be shown to be a permanent group, where K consists of those nonsingular upper triangular matrices satisfying (2.1).

The following two lemmas will be used in proving that $\mathcal{A}_n(F)$ contains only permanent groups.

2.1 Lemma. If $A \in G \in \mathcal{A}_n(F)$, then $a_{ii} \neq 0$ for $i=1, \cdots, n$.

Proof. Suppose $A \in G \in \mathcal{A}_n(F)$, but $a_{ii}=0$ for some $i=1, \cdots, n$. Since A is nonsingular there exists $y=1, \cdots, n$, such that y_i and both a_{iy} and its cofactor A_{iy} are nonzero. Consequently, the matrix $A^{-1} \in G$ has a nonzero (j, i) entry, contradicting $G \in \mathcal{A}_n(F)$.

2.2 Lemma. If $G \in \mathcal{A}_n(F)$ and F has at least 3 elements then there exists a pair of positive integers i, j $(1 \leq i, j \leq n)$ such that, for any $A \in G$,

$$
\begin{align*}
a_{im} &= 0, & m &\neq i, \\
a_{mj} &= 0, & m &\neq j.
\end{align*}
$$

Proof. The result is immediate when $n=2$ and the proof proceeds by induction on n.

Let S be the set of all i $(1 \leq i \leq n)$ for which there exists a matrix $A \in G$ such that $a_{ii} \neq 0$. Always, $1 \in S$. We shall show there is a j $(1 \leq j \leq n)$ such that if B is any matrix in G, then $b_{mj}=0$ for all $m \neq j$. If $S=\{1, \cdots, n\}$, then $G \in \mathcal{A}_n(F)$ implies j may be chosen as 1. Otherwise, suppose B is a matrix in G such that $b_{ij} \neq 0$, and let $D=\text{diag}[1, \cdots, x, \cdots, 1]$ where x is the (i, i) entry. Consider an arbitrary matrix C in G. Then BDC is in G and its $(1, j)$ entry is

$$
\sum_{k=1; k \neq i}^{n} b_{1k}c_{kj} + b_{1i}c_{ij}x.
$$
If c_{ij} is nonzero, then (2.3) vanishes for at least one x in F. Since F has at least 3 elements we may always choose a nonzero x in F such that (2.3) is also nonzero. This implies that $c_{ij}=0$ whenever $i \in S$ and $j \in S'$, the complement of S in $\{1, \ldots, n\}$.

Since C was arbitrary in G there is a permutation matrix P such that, for any $A \in G$,

$$P^{-1}AP = \begin{bmatrix} A_1 & A_2 \\ 0 & A_3 \end{bmatrix}$$

where A_1 is $k \times k$ (k is the cardinality of S').

The set $\{P^{-1}AP | A \in G\}$ is also a group and hence $\{A_1 | A \in G\}=G_1$ is a group of $k \times k$ matrices. Evidently $G_1 \in S_n(F)$. Hence, by induction, each $A_1 \in G_1$ satisfies (2.2) for $m=1, \ldots, k$. Hence $P^{-1}AP$ satisfies

$$(P^{-1}AP)_{mj}=0, \quad m \neq j, m=1, \ldots, n.$$

Thus, there exists j', not necessarily j, such that

$$a_{mj'}=0, \quad m \neq j', m=1, \ldots, n.$$

A similar argument yields an i' such that

$$a_{im'}=0, \quad m \neq i', m=1, \ldots, n.$$

3. **The main theorem.**

3.1 **Theorem.** If F is a field with at least 3 elements, then every group in each $S_n(F)$ is a permanent group.

This is an immediate consequence of the following two lemmas:

3.2 **Lemma.** If $A, B \in G \in S_n(F)$, then the ith diagonal entry of AB is $a_{ii}b_{ii}$, for all $i=1, \ldots, n$.

Proof. The (i, i) entry of AB is $\sum_{k=1}^{n} a_{ik}b_{ki}$. If $k \neq i$ and $a_{ik} \neq 0$, then $b_{ki} = 0$ since $B \in G \in S_n(F)$. On the other hand, if $k \neq i$ and $b_{ki} \neq 0$, then $a_{ik} = 0$.

3.3 **Lemma.** If $A \in G \in S_n(F)$, then $\text{per } A = \prod_{i=1}^{n} a_{ii}$.

Proof. This is obvious for $n=1, 2$. Assume the result for all $k<n$. By Lemma 2.2 there is a column of A, say the jth, where the only nonzero entry is the diagonal one. It follows that the matrices $A(j|j)$ form a group in $S_{n-1}(F)$. This group will contain the nonsingular diagonal matrices because G does. By induction, $\text{per } A(j|j) = \prod_{i \neq j}^{n} a_{ii}$ and so $\text{per } A = a_{jj} \text{ per } A(j|j) = \prod_{i=1}^{n} a_{ii}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
4. A partial converse. Clearly not every permanent group G is in some $\mathcal{A}_n(F)$, e.g., $\Delta_n \notin \mathcal{A}_n(F)$. But if a permanent group is generated by the diagonal group together with a subset of the elementary matrices and a collection \mathcal{Q} of permutation matrices, then $G=H \cdot K$ where H is the subgroup generated by \mathcal{Q} and $K \in \mathcal{A}_n(F)$ is generated by the diagonal group together with the given set of elementary matrices (Theorem 4.3).

4.1 Lemma. If G is a permanent group generated by the diagonal group together with a set of elementary matrices, then for all $A \in G$, $a_{ij} \neq 0$ implies $E_{ij}(\lambda) \in G$ for every $\lambda \in F$.

Proof. Write A as $E_1 \cdots E_mD$ where D is diagonal and each E_i is an elementary matrix in G. The only way a_{ij} can be nonzero is if there is a sequence $i=i_0, i_1, \cdots, i_k=j$ where $E_{ir_{i+1}}(\lambda) \in G$ for $r=0, 1, \cdots, k-1$. However E_{ij} is the product of the following elementary matrices

$$E_{i_0i_1}(\lambda) E_{ir_{i+1}(1)} E_{i_0i_1}(-\lambda) E_{ir_{i+1}(-1)}.$$

The proof is complete because if any group of nonsingular matrices containing the diagonal group also contains an elementary matrix $E_{pq}(\alpha)$ then it contains $E_{pq}(\beta)$ for every $\beta \in F$.

4.2 Lemma. Any permanent group generated by the diagonal group and a set of elementary matrices is in $\mathcal{A}_n(F)$.

Proof. Suppose $a_{ij} \neq 0$ for some $A \in G$, where G is a permanent group satisfying the hypotheses. We must show $b_{ji} = 0$ for all $B \in G$. If $b_{ji} \neq 0$ for some $B \in G$ then the previous lemma implies both $E_{ij}(\lambda)$ and $E_{ji}(\lambda)$ are in G. However,

$$\text{per}[E_{ij}(1) \cdot E_{ji}(1)] = 3 \quad \text{while} \quad \text{per } E_{ij}(1) = \text{per } E_{ji}(1) = 1,$$

contradicting the assumption that G was a permanent group.

4.3 Theorem. If G is a permanent group generated by the diagonal group, a set of elementary matrices S, and a nonempty set of permutation matrices \mathcal{Q} then $G=H \cdot K$ where H is the subgroup generated by \mathcal{Q} and $K \in \mathcal{A}_n(F)$ is generated by the diagonal group and S.

Proof. By virtue of Lemma 4.2, K is in $\mathcal{A}_n(F)$, and we need only show that $HK=KH$. If P is any permutation matrix in H and $E \in K$, then $PE=EP$, where $F=PEP^{-1}$ is readily seen to be in K also.
REFERENCES

Department of Mathematics, University of British Columbia, Vancouver 8, British Columbia, Canada

Department of Mathematics, University of Waterloo, Waterloo, Ontario, Canada (Current address of Larry Cummings)

Current address (LeRoy B. Beasley): 4210 Clark Street, Boise, Idaho 83705