THE PROBABILITY OF CONNECTEDNESS OF AN UNLABELLED GRAPH CAN BE LESS FOR MORE EDGES

E. M. WRIGHT

Abstract. We write $\beta = \beta(n, q)$ for the probability that a graph on n unlabelled nodes with q edges is connected; that is β is the ratio of the number of connected graphs to the total number of graphs. We write $N = n(n-1)/2$. For fixed n we might expect that β would increase with q, at least nonstrictly. On the contrary, we show that, for any given integer s, we have $\beta(n, q+1) < \beta(n, q)$ for $N - n - s \leq q \leq N - n$ and $n > n_0(s)$. We can show that $\beta(n, q+1) < \beta(n, q)$ for a much longer range, but this requires much more elaborate arguments.

An (n, q) graph has n nodes and q edges, where each edge is a different unordered pair of nodes. We write $N = n(n-1)/2$, so that $0 \leq q \leq N$. We write F_{nq} (resp. T_{nq}) for the number of (n, q) graphs in which the nodes are labelled (resp. unlabelled) and f_{nq} (resp. t_{nq}) for the number of these graphs which are connected. Then $\alpha_{nq} = f_{nq}/F_{nq}$ (resp. $\beta_{nq} = t_{nq}/T_{nq}$) is the probability that a labelled (resp. unlabelled) (n, q) graph is connected. It is natural to expect that, for fixed n, these probabilities will increase (in the nonstrict sense) as q increases. For α_{nq}, this is true and can be proved trivially. For β_{nq} it is false; the simplest counterexample is that $\beta_{69} = 20/21$ and $\beta_{610} = 14/15$ (see, for example, the diagrams of all $(6, 9)$ and $(6, 10)$ graphs in [6]).

The slightly surprising phenomenon that β_{nq} can decrease as q increases seems worth further study. Here we prove the following theorem.

Theorem. For any positive integer v, there is an $n_0 = n_0(v)$, such that

$$(1) \quad \beta_{n, N-n-s} > \beta_{n, N-n-s+1} \quad (0 \leq s \leq v)$$

when $n > n_0$ and, indeed, such that

$$(2) \quad 1 - \beta_{n, N-n-s+1} > C n^{1/2}(1 - \beta_{n, N-n-s}).$$

Presented to the Society, September 15, 1971 under the title *Decreasing probability of connectedness of a graph as number of edges increases*; received by the editors October 9, 1971.

AMS 1969 subject classifications. Primary 0565.

Key words and phrases. Unlabelled graphs, probability of connectedness.

1 The research reported herein has been sponsored by the United States Government.

\[c \quad \text{American Mathematical Society 1972} \]
Thus, for these values of \(q \), \(\beta_{n_0} \) retreats rapidly from 1 as \(q \) increases. Every statement in what follows is subject to the condition "for large enough \(n \)." The positive number \(C \), not always the same at each occurrence, is independent of \(n \) and \(q \).

For the moment we consider only unlabelled graphs. Any disconnected \((n, q)\) graph consists of a \((k, q_k)\) graph together with a \((n-k, q-q_k)\) graph for some \(q_k \) and for some \(k \) (not necessarily unique) such that \(1 \leq k \leq n/2 \). Compared with the complete \((n, N)\) graph, the disconnected \((n, q)\) graph lacks at least \(k(n-k) \) edges, so that \(q \leq N-k(n-k) \). If \(q = N-n-s \), where \(-1 \leq s \leq n-5\), we have \(k = 1 \). Hence a disconnected \((n, N-n-s)\) graph has just 2 components, one an isolated node and the other an \((n-1, N-n-s)\) graph. The latter graph, compared with the complete \((n-1, (n-1)(n-2)/2)\) graph, lacks \((n-1)(n-2)/2 - (N-n-s) = s+1 \) edges. Hence it is the complement of an \((n-1, s+1)\) graph. The relation is

\[
T_{n,N-n-s} = T_{n-1,s+1} \quad (-1 \leq s \leq n-5).
\]

Clearly \(T_{n-1,0} = T_{n-1,1} = 1 \) and so \(\beta_{n,N-n+1} < \beta_{n,N-n} \) provided \(T_{n,N-n+1} < T_{n,N-n} \), i.e. provided \(T_{n-1,n} < T_{n,n} \). The smallest \(n \) for which this is true is 6, where \(T_{65} = 15, T_{66} = 21 \) (see [6]). Hence \(\beta_{6,10} < \beta_{6,9} \), the counterexample given above.

If \(n \geq 2q \), the \((n, q)\) graphs can be put into \((1, 1)\) correspondence with the \((2q, q)\) graphs by removing \(n-2q \) of the isolated nodes from each of the former and conversely. Hence \(T_{n,q} = T_{2q,q} \) and, from (3), we have

\[
T_{n,N-n-s} = t_{n,N-n-s} = T_{2(s+1),s+1} \quad (-1 \leq s \leq v).
\]

To prove (2), we have then to show that

\[
T_{2s+2,s+1}/T_{2s,s+1} > C n^{1/2} T_{2s+2,s+1}/T_{2s,s+1}
\]

Since \(T_{2s+2,s+1}/T_{2s,s} = C \), it is enough to show that \(T_{n,N-n-s} > C n^{1/2} T_{n,N-n-s+1} \), that is \(T_{n,n+s} > C n^{1/2} T_{n,n+s-1} \).

We shall prove a little more, viz. the following lemma.

LEMMA. If \(Cn < q < Cn \), then \(T_{n,q+1} > C n^{1/2} T_{n,q} \).

Henceforth we suppose the hypothesis of the lemma to be satisfied. We now use Polya’s famous counting theorem [1], [5], [8]. \(S_n \) is the symmetric group (of degree \(n \) and order \(n! \)) of all the permutations \(\pi \) of the \(n \) labelled nodes in a labelled \((n, q)\) graph, and \(F_\pi = F_\pi(n, q) \) is the number of labelled \((n, q)\) graphs invariant under \(\pi \). Then Polya’s theorem tells us that

\[
n! T_{n,q} = \sum_{\pi \in S_n} F_\pi.
\]
We are henceforth concerned with the enumeration of labelled graphs. The permutation \(\pi \) has a unique expression as a product of disjoint cycles, which contains \(p_j \) node-cycles of length \(j \), where \(1 \leq j \leq n \). The node permutation \(\pi \) induces a permutation on the \(N \) possible edges in the graph which contains \(P_j \) edge-cycles of length \(j \). We have

\[
\sum_{j=1}^{n} j p_j = n, \quad \sum_{j=1}^{n} j P_j = N.
\]

Oberschelp [7] gives formulae for \(P_j \) in terms of the \(p_j \). All we require here is to note that

\[
P_1 = \frac{1}{2} p_1 (p_1 - 1) + p_2.
\]

Any graph invariant under \(\pi \) must contain all the edges of a particular edge-cycle or none. Hence

\[
F_\pi(n, q) = \sum' \prod_{j=1}^{n} B(P_j, s_j),
\]

where \(B(h, k) = h!/(k!(h-k)!) \), \(B(h, 0) = 1 \) and \(\sum' \) denotes summation over all \(s_1, \cdots, s_n \) such that \(\sum j s_j = q \). We write \(M = n^{3/4} \) and separate the sum on the right-hand side of (4) into two parts, so that

\[
n! T_{nq} = T_1(q) + T_2(q),
\]

where \(T_1(q) \) contains all the \(F_\pi \) for which \(p_1 > M \) and \(T_2(q) \) those for which \(p_1 \leq M \).

First we take \(p_1 > M \), so that, \(p_1 > Cn^{3/2} \). In (7), we replace \(q \) by \(q+1 \), discard those terms on the right in which \(s_1 = 0 \) and replace \(s_1 \) by \(s_1 + 1 \) in the others. We have then

\[
F_\pi(n, q + 1) \geq \sum' \lambda(P_1, s_1) \prod_{j=1}^{n} B(P_j, s_j) \geq Cn^{1/2} F_\pi(n, q),
\]

where

\[
\lambda(P_1, s_1) = (P_1 - s_1)/(s_1 + 1) \geq (Cn^{3/2} - q)/(q + 1) \geq Cn^{1/2}
\]

under the hypothesis of the lemma. Hence

\[
T_1(q + 1) > Cn^{1/2} T_1(q).
\]

We write \([R(X)]_q\) for the coefficient of \(X^q \) in the polynomial \(R(X) \). From (7),

\[
F_\pi(n, q) = \left[\prod (1 + X^j)^{P_j} \right]_q \leq Y^{-q} \prod (1 + Y^j)^{P_j},
\]

where \(Y \) is any positive number. Again, if \(j > 2 \), we have \((1 + Y^j)^2 \leq (1 + Y^2)^j \). Hence

\[
\prod (1 + Y^j)^{P_j} \leq (1 + Y)^{P_1} (1 + Y^2)^{(N - P_1)/2}
\]
by (5). We now put $Y = ((q/(N-q)))^{1/2}$ and have $F_\varepsilon(n, q) \leq V^{1/2} W$, where

$$V^2 = (1 + Y)^2/(1 + Y^2) \leq 1 + Cn^{-1/2},$$

and

$$W = Y^{-3}(1 + Y^2)^{N/2} = (N/q)^{q/2}(N/(N-q))^{(N-q)/2}.$$

If $p_1 \leq M$ we have $P_1 \leq Cn^{3/2}$ and $P_1 \log V < Cn$. Again

$$\log W \leq (q/2)\log(N/q) + {(N - q)/2}\log(1 + q/(N-q))$$

$$\leq (q/2)\log q + Cn.$$

Hence $\log F_\varepsilon(n, q) \leq (q/2)\log q + Cn$. There are less than $n!$ terms in $T_2(q)$ and so

$$T_2(q) \leq n! \quad q^{q/2} e^{Cn}.$$ \hspace{1cm} (10)

We now write $p = \lfloor(2q)/\log(2q)\rfloor$ so that $M < p \leq n$. The number of π for which $p_1 = p$ is $B(n, p)D(n-p)$, where $D(m)$ is the number of permutations of the m numbers 1, 2, ..., m in which no number remains unmoved, i.e. there are no unit cycles. Then $D(m)$ is Euler's rencontre number and is the nearest integer to $m!/e$ (see, for example, [3], [4], [9], [12]). Hence the number of π for which $p_1 = p$ is greater than $Cn!/p!$. Again, by (6), for such a π, we have $P_1 \geq \frac{1}{2} p(p-1)$ and so

$$F_\varepsilon \geq B(P_1, q) \geq B(p(p-1)/2, q) = p! \Lambda_p$$

(say). Now $\log(p!) = O(p \log p) = O(q)$ and so

$$\log \Lambda_p = 2q \log p - q \log q + O(q) = q \log q - 2q \log \log q + O(n).$$

Hence

$$T_1(q) \geq C(n!)\Lambda_p \geq C(n!)(q/(\log q)^2)^q e^{-Cn}.$$ \hspace{1cm} (11)

It follows from (8), (10) and (11) that

$$T_2(q) = o(T_1(q)), \quad n! T_{nq} = T_1(q)(1 + o(1)).$$

This is true when $q+1$ replaces q and so our lemma follows from (9).

We can improve the factor $n^{1/2}$ in (2) to $n/(\log n)^2$. More significantly, we can show that (1) holds over a range of q of length C_1n for any fixed positive C_1 and large enough n. It is possible that we can replace C_1n by a constant multiple of $n \log n$. But these results require the development of a much more elaborate theory, and, in particular, a study of the asymptotic behaviour of T_{nq} and of $T_{n,q-1}/T_{nq}$ for large n and large q such that $q < (n \log n)/2$.

REFERENCES

Principal's Office, University of Aberdeen, Aberdeen, United Kingdom