NONNEGATIVE MATRICES WITH NONNEGATIVE INVERSES

RALPH DEMARR

Abstract. We generalize a result stating that a nonnegative finite square matrix has a nonnegative inverse if and only if it is the product of a permutation matrix by a diagonal matrix. We consider column-finite infinite matrices and give a simple proof using elementary ideas from the theory of partially ordered linear algebras.

In [1] the authors show that a nonnegative square matrix has a nonnegative inverse if and only if its entries are all zero except for a single positive entry in each row and column. In this note we generalize this result and simplify the proof as well.

Let A denote the real linear algebra of all column-finite infinite matrices with real entries. We partially order A as follows: $[a_{ij}] \leq [b_{ij}]$ if and only if $a_{ij} \leq b_{ij}$ for all i, j. Thus, A is a partially ordered linear algebra (pola) and if I denotes the identity matrix, then $0 \leq I$. See [2] for the precise definition of a pola. An example will illustrate the result to be obtained. Let $x = [a_{ij}]$ and $y = [b_{ij}]$ be defined as follows: $a_{ij} = 1$ if $i = j + 1$ and is zero otherwise; $b_{ij} = 1$ if $j = i + 1$ and is zero otherwise. Thus, $0 \leq x$, $0 \leq y$ and $0 \leq xy \leq 1 \leq yx$. Note that each column of x contains exactly one positive entry and each row of x contains at most one positive entry.

Theorem. Let A be the pola described above. If $x, y \in A$, $0 \leq x$, $0 \leq y$ and $0 \leq xy \leq 1 \leq yx$, then each column of x contains exactly one positive entry and each row of x contains at most one positive entry. The conclusion applies to the matrix y if we interchange the words “row” and “column”.

Proof. Define $d = yx - 1 \geq 0$ and note that $1 + d \leq (1 + d)^2 = yxyx \leq xy = 1 + d$ since $xy \leq 1$. Hence, $1 + 2d \leq (1 + d)^2 \leq 1 + d$, which means $d \leq 0$. Thus $d = 0$ and $yx = 1$, which means that y is a left inverse for x. Hence, each column of x must contain at least one positive entry. Next construct a matrix z so that $0 \leq z \leq x$ and each column of z has only one positive entry and this entry is equal to the corresponding entry in the matrix x.

Received by the editors October 1, 1971.

Key words and phrases. Matrix theory, inverses, ordered algebras.

American Mathematical Society 1972
Note that $0 \leq zy \leq xy \leq 1$, which means that zy and xy are diagonal matrices. Hence, $(zy)(xy) = (xy)(zy)$. Now $z = (zy)(xy)x = (xy)(zy)x = x(yz)$ and $0 \leq yz \leq xy \leq 1$, which means that yz is a diagonal matrix. Using elementary properties of matrix multiplication and the fact that x and z have one positive entry in common in each column we see that $yz = 1$ and therefore $x = z$. Hence, x has exactly one positive entry in each column.

The example above shows that some rows of x may contain only zeros. We show that x has at most one positive entry in each row. Let us now construct a matrix w so that $0 \leq w \leq x$ and each row of w has only one positive entry if the same row of x has a positive entry in it and this entry is equal to the corresponding entry in the matrix x. Now $w = (wy)x$ and since $0 \leq wy \leq xy \leq 1$, we see that wy is a diagonal matrix. The same reasoning applied above to the matrix z shows that $w = x$. Hence, x has at most one positive entry in each row.

References

Department of Mathematics, University of New Mexico, Albuquerque, New Mexico 87106