THE RADIUS OF CLOSE-TO-CONVEXITY OF FUNCTIONS OF BOUNDED BOUNDARY ROTATION

H. B. COONCE1 AND M. R. ZIEGLER

Abstract. An analytic function whose boundary rotation is bounded by $k\pi$ ($k \geq 2$) is shown to map a disc of radius r_k onto a close-to-convex domain, where r_k is the solution of a transcendental equation when $k > 4$ and $r_k = 1$ when $2 \leq k \leq 4$. The above value of r_k is shown to be the best possible for each k and an asymptotic expression for r_k is obtained.

Let V_k ($k \geq 2$) denote the class of functions $f(z)$ which are analytic in the unit disc $E = \{z : |z| < 1\}$, normalized by $f(0) = 0$ and $f'(0) = 1$, have non-vanishing derivatives in E, and map E onto a domain which has boundary rotation at most $k\pi$. If $k = 2$, then V_k is precisely the set of univalent functions which map E onto a convex domain. If $2 < k \leq 4$, then V_k is a subset of the functions which map E onto a close-to-convex domain ([1], [6]). Finally, if $k > 4$, then functions in V_k need not be close-to-convex or even univalent. In this paper we determine the radius of close-to-convexity of V_k for each k. i.e. the radius of the largest disc centered at the origin which is mapped onto a close-to-convex domain by all f in V_k. The techniques used are similar to those used by Krzyz in determining the radius of close-to-convexity of the class of univalent functions [2]. Some related problems were posed by M. O. Reade [5].

Theorem 1. If $k > 4$, the radius of close-to-convexity of V_k is the unique root of the equation

$$(1) \quad 2 \cot^{-1}w - k \cot^{-1}(kw/2) = -\pi$$

in the interval $(R_k, 1)$ where R_k is the radius of convexity of V_k and $w = (1 - r^2)[k^2r^2 - (1 + r^2)^2]^{-1/2}$, while if $2 \leq k \leq 4$, the radius of close-to-convexity is 1.

Proof. Kaplan [1] has shown that a necessary and sufficient condition for a function $f(z)$, regular in E and satisfying $f''(z) \neq 0$ to map $|z| = r$ onto
a close-to-convex curve is that

\[\arg[z_2f'(z_2)] - \arg[z_1f'(z_1)] \geq -\pi \]

for all \(z_1 \) and \(z_2 \) with \(|z_1|=r \) and \(z_2=z_1e^{i\theta} \), \(0<\theta<2\pi \). The radius of close-to-convexity of \(V_k \) is the largest value of \(r \) for which (2) holds for all \(f(z) \) in \(V_k \). The radius of convexity \(R_k \) of \(V_k \) is the smallest positive root of the equation \(1-kr+r^2=0 \); \(R_2=1 \) and \(R_k<1 \) when \(k>2 \) [3]. Clearly the radius of close-to-convexity is larger than \(R_k \) when \(k>2 \) and equal to \(R_k \) when \(k=2 \), hence we assume throughout the remainder of this work that \(r>R_k \) and \(k>2 \).

Define

\[\Delta(r, \theta) = \inf_{z \in V_k} \arg[z_2f'(z_2)/z_1f'(z_1)] \]

where \(z_1 \) and \(z_2 \) are defined as above and the argument is chosen to vary continuously from an initial value of zero. Let \(\zeta=(z-z_1)/(1-\bar{z}_1z) \) and \(\zeta_0=(z_2-z_1)/(1-\bar{z}_2z_2) \) and define \(g(\zeta) \) by

\[g(\zeta) = [f((\zeta + z_1)/(1 + z_1\bar{z})) - f(z_1)]/f'(z_1)(1 - |z_1|^2). \]

Robertson has shown that \(g(z) \) is in \(V_k \) whenever \(f(z) \) is in \(V_k \) [7]. Evaluating \(g'(\zeta_0) \) directly yields

\[g'(\zeta_0) = f'(z_2)(1 - \bar{z}_1z_2)^2/f'(z_1)(1 - |z_1|^2)^2; \]

hence we have \(\Delta(r, \theta) = \arg[(z_2/z_1)(1-\bar{z}_1z_2)^{-2}] + \inf_{g \in V_k} \arg[g'(\zeta_0)] \). Now

\[\arg[(z_2/z_1)(1 - \bar{z}_1z_2)^{-2}] = 2 \cot^{-1}[(1 - r^2)\cot(\theta/2)/(1 + r^2)]; \]

\[|\zeta_0| = r[2(1 - \cos \theta)/(1 - 2r^2 \cos \theta + r^4)]^{1/2}, \]

and

\[\inf_{g \in V_k} \arg[g'(\zeta_0)] = -k \cot^{-1}[(1 - |\zeta_0|^2)^{1/2}/|\zeta_0|] \tag{4} \]

thus a brief calculation shows

\[\Delta(r, \theta) = 2 \cot^{-1}[(1 - r^2)\cot(\theta/2)/(1 + r^2)] \]

\[- k \cot^{-1}[(1 - r^2)/r(2(1 - \cos \theta))^{1/2}]. \tag{5} \]

Furthermore, this estimate is sharp since, for a fixed \(z_1 \) and \(z_2 \), if \(g(\zeta) \) is the function which gives equality in (4) and \(f(z) \) is defined by

\[f(z) = [g((z - z_1)/(1 - \bar{z}_1z)) - g(-z_1)]/g'(-z_1)(1 - |z_1|^2), \]

then equality occurs in (3) for this choice of \(f(z) \). Let \(\Delta(b)=\inf \Delta(r, \theta) \) \((0<\theta<2\pi)\). Differentiating (5) with respect to \(\theta \) we obtain

\[\partial \Delta(r, \theta)/\partial \theta = [1 + r^2 - kr \cos(\theta/2)](1 - r^2)/(1 - 2r^2 \cos \theta + r^4); \]
hence $\Delta(r, \theta)$ assumes its minimum value for a fixed r when $\theta = \theta_0$ where $\cos(\theta_0/2) = (1+r^2)/kr$. The existence of θ_0 is assured by the fact that for $r > R_k$, $(1+r^2)/kr < 1$. Substituting in (5), we have

$$\Delta(r) = 2 \cot^{-1}w - k \cot^{-1}(kw/2)$$

where $w = (1-r^2)(k^2r^2-(1+r^2)^2)^{-1/2}$. It is evident that $\Delta(r)$ is a decreasing function of r, hence $\Delta(r) \geq \Delta(1) = \pi(2-k)/2$. For $k \leq 4$, $\Delta(1) \geq -\pi$ and the radius of close-to-convexity is 1, while for $k > 4$, $\Delta(1) < -\pi$ and $\Delta(R_k) = 0$; hence there exists a unique solution r_k to the equation $\Delta(r) = -\pi$, $R_k < r < 1$, and this solution is the radius of close-to-convexity.

Table 1 gives the approximate value of r_k for various k. [The calculations were performed on a Univac 1106 by Mr. Michael Barnett of the Computer Science Center of Mankato State College.]

<table>
<thead>
<tr>
<th>k</th>
<th>r_k</th>
<th>k</th>
<th>r_k</th>
<th>k</th>
<th>r_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>9</td>
<td>0.34593</td>
<td>50</td>
<td>0.05952</td>
</tr>
<tr>
<td>5</td>
<td>0.70388</td>
<td>10</td>
<td>0.30849</td>
<td>100</td>
<td>0.02973</td>
</tr>
<tr>
<td>6</td>
<td>0.55362</td>
<td>20</td>
<td>0.14994</td>
<td>200</td>
<td>0.01486</td>
</tr>
<tr>
<td>7</td>
<td>0.45961</td>
<td>30</td>
<td>0.09946</td>
<td>400</td>
<td>0.00743</td>
</tr>
<tr>
<td>8</td>
<td>0.39431</td>
<td>40</td>
<td>0.07446</td>
<td>800</td>
<td>0.00371</td>
</tr>
</tbody>
</table>

Theorem 2. $\lim_{k \to \infty} kr_k = 2.9716 \ldots = \alpha$ where α is the unique root of the equation

$$\cot^{-1}[(\alpha^2 - 1)^{-1/2}] - (\alpha^2 - 1)^{1/2} = -\pi/2$$

in the interval $[\pi/2, \pi]$.

Proof. If $f(z)$ is in V_k, then (4) implies $\Re \{f'(z)\} > 0$ for $|z| < \pi/2k$. $\Re \{f'(z)\} > 0$ is a sufficient condition for close-to-convexity, hence $r_k \geq \pi/2k$. An examination of the mapping properties of the function

$$f_0(z) = (1/k)\{[(1 + z)/(1 - z)]^{k/2} - 1\}$$

shows that the radius of univalence ρ_k of $f_0(z)$ satisfies $\rho_k = \csc(2\pi/k) - \cot(2\pi/k)$. Since $\lim k\rho_k = \pi$ ($k \to \infty$), we have $\alpha = \lim \sup kr_k \leq \pi$ ($k \to \infty$). If $\{k_n\}$ is any sequence such that $\lim k_n r_{k_n} = \alpha$ ($n \to \infty$), then it follows from (1) that α satisfies (7). However a differentiation of (7) shows the left-hand side to be a monotonic decreasing function and thus $\lim kr_n$ ($k \to \infty$) must exist and is the unique root of (7).
REFERENCES

DEPARTMENT OF MATHEMATICS, MANKATO STATE COLLEGE, MANKATO, MINNESOTA 56001

DEPARTMENT OF MATHEMATICS, MARQUETTE UNIVERSITY, MILWAUKEE, WISCONSIN 53233