On closed curves in Minkowski spaces
HTML articles powered by AMS MathViewer
- by H. S. Witsenhausen
- Proc. Amer. Math. Soc. 35 (1972), 240-241
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296880-6
- PDF | Request permission
Abstract:
The minimum pseudo-diameter d and the length L of a simple closed rectifiable curve in Minkowski space satisfy $L \geqq gd$ where g is the half-girth of the unit ball. The bound is sharp.References
- Hans Herda, Research Problems: A Conjectured Characterization of Circles, Amer. Math. Monthly 78 (1971), no. 8, 888–889. MR 1536460, DOI 10.2307/2316488 J. J. Schäffer, Inner diameter, perimeter, and girth of spheres, Math. Ann. 173 (1967), 59-79; addendum, ibid. 173 (1967), 79-82. MR 36 #1959. A. M. Fink, A circle maximizes the minimum pseudo-diameter (written communication). R. Ault, Metric characterization of circles (written communication).
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 240-241
- MSC: Primary 53C70; Secondary 52A50
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296880-6
- MathSciNet review: 0296880