Error bounds for Galerkin’s method for monotone operator equations
HTML articles powered by AMS MathViewer
- by Martin H. Schultz
- Proc. Amer. Math. Soc. 35 (1972), 227-229
- DOI: https://doi.org/10.1090/S0002-9939-1972-0297123-X
- PDF | Request permission
Abstract:
An abstract theorem, generalizing a result of Nitsche, is proved. This gives sharp error bounds for the Galerkin method for approximating the solutions of a large class of non-linear operator equations in Hilbert spaces.References
- Felix E. Browder, Approximation-solvability of nonlinear functional equations in normed linear spaces, Arch. Rational Mech. Anal. 26 (1967), 33–42. MR 220119, DOI 10.1007/BF00283857
- P. G. Ciarlet, M. H. Schultz, and R. S. Varga, Numerical methods of high-order accuracy for nonlinear boundary value problems. V. Monotone operator theory, Numer. Math. 13 (1969), 51–77. MR 250496, DOI 10.1007/BF02165273
- J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens, Numer. Math. 11 (1968), 346–348 (German). MR 233502, DOI 10.1007/BF02166687
- J. Nitsche, Verfahren von Ritz und Spline-Interpolation bei Sturm-Liouville-Randwertproblemen, Numer. Math. 13 (1969), 260–265 (German). MR 278532, DOI 10.1007/BF02167557
- J. Nitsche, Konvergenz des Ritz-Galerkinschen Verfahrens bei nichtlinearen Operatorgleichungen, Iterationsverfahren, Numerische Mathematik, Approximationstheorie, Internat. Schriftenreihe Numer. Math., Vol. 15, Birkhäuser, Basel, 1970, pp. 75–81 (German). (Tagung Nichtlineare Aufgaben Numer. Math., Oberwolfach, 1968),. MR 0378406
- Martin H. Schultz, $L^{2}$ error bounds for the Rayleigh-Ritz-Galerkin method, SIAM J. Numer. Anal. 8 (1971), 737–748. MR 298918, DOI 10.1137/0708067
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 227-229
- MSC: Primary 65J05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0297123-X
- MathSciNet review: 0297123