Weak partition relations
HTML articles powered by AMS MathViewer
- by Andreas Blass
- Proc. Amer. Math. Soc. 35 (1972), 249-253
- DOI: https://doi.org/10.1090/S0002-9939-1972-0297576-7
- PDF | Request permission
Abstract:
The partition relation ${\aleph _1} \to ({\aleph _1})_{3,2}^2$, which was known to contradict the continuum hypothesis [1], is disproved without this hypothesis.References
- P. Erdős, A. Hajnal, and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 (1965), 93–196. MR 202613, DOI 10.1007/BF01886396
- Fred Galvin and Saharon Shelah, Some counterexamples in the partition calculus, J. Combinatorial Theory Ser. A 15 (1973), 167–174. MR 329900, DOI 10.1016/s0097-3165(73)80004-4 E. M. Kleinberg, Somewhat homogeneous sets. I, Notices Amer. Math. Soc. 16 (1969), 840. Abstract #69T-E49. G. Kurepa, Ensembles linéaires et une classe de tableaux ramifiés (tableaux ramifiés de M. Aronszajn), Publ. Inst. Math. (Beograd) 6 (1936), 129-160.
- Michael Morley, Partitions and models, Proceedings of the Summer School in Logic (Leeds, 1967) Springer, Berlin, 1968, pp. 109–158. MR 0248016 F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264-286.
- Mary Ellen Rudin, Souslin’s conjecture, Amer. Math. Monthly 76 (1969), 1113–1119. MR 270322, DOI 10.2307/2317183
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 249-253
- MSC: Primary 04A20
- DOI: https://doi.org/10.1090/S0002-9939-1972-0297576-7
- MathSciNet review: 0297576