## Nonfactorization in subsets of the measure algebra

HTML articles powered by AMS MathViewer

- by J. T. Burnham
- Proc. Amer. Math. Soc.
**35**(1972), 104-106 - DOI: https://doi.org/10.1090/S0002-9939-1972-0298342-9
- PDF | Request permission

## Abstract:

In this note we unify and simplify some recent results showing the impossibility of factoring in certain convolution subalgebras of the group algebra of a nondiscrete LCAG. A new result is a direct proof of nonfactorization of the classical Hardy spaces, regarded as convolution algebras, on the circle. By considering the ideal of Hilbert-Schmidt operators in the algebra of compact operators on a Hilbert space we illustrate that nonfactorization is not peculiar to convolution.## References

- R. P. Boas Jr.,
*Isomorphism between $H^p$ and $L^p$*, Amer. J. Math.**77**(1955), 655–656. MR**77704**, DOI 10.2307/2372590 - J. T. Burnham,
*Closed ideals in subalgebras of Banach algebras. I*, Proc. Amer. Math. Soc.**32**(1972), 551–555. MR**295078**, DOI 10.1090/S0002-9939-1972-0295078-5
—, - J. Cigler,
*Normed ideals in $L^{1}\,(G)$*, Indag. Math.**31**(1969), 273–282. Nederl. Akad. Wetensch. Proc. Ser. A 72. MR**0250086** - Paul J. Cohen,
*Factorization in group algebras*, Duke Math. J.**26**(1959), 199–205. MR**104982** - R. E. Edwards,
*On functions which are Fourier transforms*, Proc. Amer. Math. Soc.**5**(1954), 71–78. MR**60158**, DOI 10.1090/S0002-9939-1954-0060158-5 - Colin C. Graham,
*$M_{0}\,(G)$ is not a prime $L$-ideal of measures*, Proc. Amer. Math. Soc.**27**(1971), 557–562. MR**278007**, DOI 10.1090/S0002-9939-1971-0278007-9 - Edwin Hewitt,
*The ranges of certain convolution operators*, Math. Scand.**15**(1964), 147–155. MR**187016**, DOI 10.7146/math.scand.a-10738 - Edwin Hewitt and Kenneth A. Ross,
*Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups*, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR**0262773** - John C. Martin and Leonard Y. H. Yap,
*The algebra of functions with Fourier transforms in $L^{p}$*, Proc. Amer. Math. Soc.**24**(1970), 217–219. MR**247378**, DOI 10.1090/S0002-9939-1970-0247378-0 - Hans Reiter,
*$L^{1}$-algebras and Segal algebras*, Lecture Notes in Mathematics, Vol. 231, Springer-Verlag, Berlin-New York, 1971. MR**0440280** - Hans Reiter,
*Classical harmonic analysis and locally compact groups*, Clarendon Press, Oxford, 1968. MR**0306811** - Walter Rudin,
*Factorization in the group algebra of the real line*, Proc. Nat. Acad. Sci. U.S.A.**43**(1957), 339–340. MR**85476**, DOI 10.1073/pnas.43.4.339 - Walter Rudin,
*Representation of functions by convolutions*, J. Math. Mech.**7**(1958), 103–115. MR**0104981**, DOI 10.1512/iumj.1958.7.57009 - R. Salem,
*Sur les transformations des séries de Fourier*, Fund. Math.**33**(1939), 108–114 (French). MR**435**, DOI 10.4064/fm-33-1-108-114 - Nicholas Th. Varopoulos,
*Sur les mesures de Radon d’un groupe localement compact abélien*, C. R. Acad. Sci. Paris**258**(1964), 3805–3808 (French). MR**161178**
H.-C. Wang, - Leonard Y. H. Yap,
*Ideals in subalgebras of the group algebras*, Studia Math.**35**(1970), 165–175. MR**270075**, DOI 10.4064/sm-35-2-165-175

*Closed ideals in subalgebras of Banach algebras*. II:

*Ditkin’s condition*(in preparation); Notices Amer. Math. Soc.

**17**(1970), 815. Abstract #70T-B149.

*Non-factorization in group algebras*, Studia Math. (to appear); See also, Ph.D. Dissertation, University of Iowa, Iowa City, Iowa, 1971.

## Bibliographic Information

- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**35**(1972), 104-106 - MSC: Primary 43A10; Secondary 42A96
- DOI: https://doi.org/10.1090/S0002-9939-1972-0298342-9
- MathSciNet review: 0298342