INTEGRAL AS A CERTAIN TYPE OF A POSITIVE DEFINITE FUNCTION

PARENY P. SAWOROTNOW

Abstract. The integral with respect to an H^*-algebra valued measure on a compact Hausdorff space S is characterized as a certain type of positive definite function on the space $C(S)$ of continuous functions on S.

1. Let A be a proper H^*-algebra, let $\tau(A)$ be its trace-class \cite{5} and let μ be a $\tau(A)$-valued measure defined on the Borel sets of a compact Hausdorff space S. One can define the integral $I(f) = \int f \, d\mu$ on the algebra $B = C(S)$ of all continuous complex-valued functions f on S the way it was done in \cite[p. 120]{8}. Also one can show that the integral I behaves as a positive definite function on B. In fact I is a positive A-functional on B in the sense of \cite{9}, i.e. $\sum_{i,j} a_i^{*} I(f_i f_j) a_j \geq 0$ for all $\{a_1, \cdots, a_n\} \subseteq A$ and $\{f_1, \cdots, f_n\} \subseteq B$. In this note we shall show that this property can be used to characterize the integral I.

This paper can be considered as a continuation of \cite{9}. We shall use the same terminology.

2. Theorem 1 below constitutes the main result of the paper. It can be considered as a generalization of Bochner theorem \cite{8}. Note that unlike Theorem VI.7.3 of \cite{2} we do not make any assumptions about continuity of the mapping I.

Theorem 1. Let A, S and $B = C(S)$ be as above. If μ is a positive Borel $\tau(A)$-valued measure on S then $I(f) = \int f \, d\mu$ is a positive A-functional on B (see the definition before Lemma 1 in \cite{9}). Conversely each positive A-functional I on B is of the form $I(f) = \int f \, d\mu$ for some positive $\tau(A)$-valued measure μ on S.

Proof. The first part of Theorem 1 is established in the way the first part of the theorem on p. 120 of \cite{8} was proven (here again one can show...
that a linear mapping \(I: B \to \tau(A) \) is a positive \(A \)-functional if

\[
\text{tr}
\left(
\sum_{i,j} a_i^* I(f_i,f_j) a_j
\right)
\geq 0
\quad \text{for all } \{a_i\} \subset A, \{f_i\} \subset B.
\]

Now let \(I \) be a positive \(A \)-functional on \(B \). Then [9, Theorem 1] there exists a Hilbert module \(H \), a \(* \)-representation \(f \to T_f \) of \(B \) by continuous \(A \)-linear operators on \(H \) and \(x \in H \) such that \(I(f) = (x, T_f x) \) for all \(f \in B \).

Now note that \(H \) is a Hilbert space under the scalar product \([x, y] = \text{tr}(y, x) \) and each \(T_f \) is a bounded linear operator on \(H \) (see [6]). Thus one can apply the Proposition II of subsection 4 of §17 of [4]: there exists a spectral measure \(P: \Delta \to P_\Delta \) on \(\mathcal{S} \) such that \(T_f = \int_{\mathcal{S}} f(s) \, dP_s \) for all \(f \in B \) (note that the space \(\mathfrak{M} \) of maximal ideals of \(B \) is homeomorphic to \(\mathcal{S} \) [3, 19C–D]; see also the example after Theorem 3 in §11 of [4]).

From the fact that each \(P_\Delta \) commutes with each operator \(Q \) such that \(QT_f = T_f Q \), \(f \in B \), we conclude that the operators \(P_\Delta \) are \(A \)-linear [6, Definition 4]. Thus the mapping \(\Delta \to P_\Delta \) is a generalized spectral measure [8, p. 118] (also [7, p. 149]) defined on Borel sets of \(\mathcal{S} \). If we define the measure \(\mu \) by \(\mu_\Delta = (x, P_\Delta x) \) then one can readily verify that \(I(f) = (x, T_f x) = (x, \int x(s) \, dP_s x) = \int f(s) \, d(x, P_s x) = \int f(s) \, d\mu(s) \).

3. In a similar manner one can prove also the following two theorems (here also we use Theorem 1 of [9] and the Proposition II in subsection 4 of §17 of [4]).

Theorem 2. For each \(* \)-representation \(x \to T_x \), by \(A \)-linear operators, of a commutative \(B^* \)-algebra \(B \), having an identity, there exists a generalized spectral measure \(\Delta \to P_\Delta \) on the space \(\mathfrak{M} \) of maximal ideals of \(B \) such that \(T_x = \int_{\mathfrak{M}} x(M) \, dP_M \) for each \(x \in B \) (we use the terminology of [4] here).

Theorem 3. Each positive \(A \)-functional \(\rho \) on the algebra \(B \) is of the form \(\rho(x) = \int_{\mathfrak{M}} x(M) \, d\mu(M) \) for some positive \(\tau(A) \)-valued Borel measure \(\mu \) on \(\mathfrak{M} \).

References

DEPARTMENT OF MATHEMATICS, CATHOLIC UNIVERSITY OF AMERICA, WASHINGTON, D.C. 20017