Integral as a certain type of a positive definite function
HTML articles powered by AMS MathViewer
- by Parfeny P. Saworotnow
- Proc. Amer. Math. Soc. 35 (1972), 93-95
- DOI: https://doi.org/10.1090/S0002-9939-1972-0298430-7
- PDF | Request permission
Abstract:
The integral with respect to an ${H^ \ast }$-algebra valued measure on a compact Hausdorff space S is characterized as a certain type of positive definite function on the space $C(S)$ of continuous functions on S.References
- Warren Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364β386. MR 13235, DOI 10.1090/S0002-9947-1945-0013235-8
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173 M. A. NaΗmark, Normed rings, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1964. MR 19, 870; MR 22 #1824.
- Parfeny P. Saworotnow and John C. Friedell, Trace-class for an arbitrary $H^{\ast }$-algebra, Proc. Amer. Math. Soc. 26 (1970), 95β100. MR 267402, DOI 10.1090/S0002-9939-1970-0267402-9
- Parfeny P. Saworotnow, A generalized Hilbert space, Duke Math. J. 35 (1968), 191β197. MR 227749
- Parfeny P. Saworotnow, Representation of a topological group on a Hilbert module, Duke Math. J. 37 (1970), 145β150. MR 262837
- Parfeny P. Saworotnow, Bochner-Raikov theorem for a generalized positive definite function, Duke Math. J. 38 (1971), 117β121. MR 275183
- Parfeny P. Saworotnow, Generalized positive linear functionals on a Banach algebra with an involution, Proc. Amer. Math. Soc. 31 (1972), 299β304. MR 287321, DOI 10.1090/S0002-9939-1972-0287321-3
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 93-95
- MSC: Primary 46K05; Secondary 28A45
- DOI: https://doi.org/10.1090/S0002-9939-1972-0298430-7
- MathSciNet review: 0298430