A fixed point theorem for asymptotically nonexpansive mappings
HTML articles powered by AMS MathViewer
- by K. Goebel and W. A. Kirk
- Proc. Amer. Math. Soc. 35 (1972), 171-174
- DOI: https://doi.org/10.1090/S0002-9939-1972-0298500-3
- PDF | Request permission
Abstract:
Let K be a subset of a Banach space X. A mapping $F:K \to K$ is said to be asymptotically nonexpansive if there exists a sequence $\{ {k_i}\}$ of real numbers with ${k_i} \to 1$ as $i \to \infty$ such that $\left \| {{F^i}x - {F^i}y} \right \| \leqq {k_i}\left \| {x - y} \right \|,x,y \in K$. It is proved that if K is a non-empty, closed, convex, and bounded subset of a uniformly convex Banach space, and if $F:K \to K$ is asymptotically nonexpansive, then F has a fixed point. This result generalizes a fixed point theorem for nonexpansive mappings proved independently by F. E. Browder, D. Göhde, and W. A. Kirk.References
- Felix E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. MR 187120, DOI 10.1073/pnas.54.4.1041
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- K. Goebel, An elementary proof of the fixed-point theorem of Browder and Kirk, Michigan Math. J. 16 (1969), 381–383. MR 251604
- Dietrich Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258 (German). MR 190718, DOI 10.1002/mana.19650300312
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
- W. A. Kirk, On nonlinear mappings of strongly semicontractive type, J. Math. Anal. Appl. 27 (1969), 409–412. MR 244814, DOI 10.1016/0022-247X(69)90057-2
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 171-174
- MSC: Primary 47H10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0298500-3
- MathSciNet review: 0298500