A nonlinear complementarity problem in mathematical programming in Banach space
HTML articles powered by AMS MathViewer
- by M. S. Bazaraa, J. J. Goode and M. Z. Nashed
- Proc. Amer. Math. Soc. 35 (1972), 165-170
- DOI: https://doi.org/10.1090/S0002-9939-1972-0300163-5
- PDF | Request permission
Abstract:
An existence and uniqueness theorem for the nonlinear complementarity problem over closed convex cones in a reflexive real Banach space is established, using perturbations of solutions of variational inequalities and monotonicity methods.References
- S. Karamardian, The nonlinear complementarity problem with applications. I, II, J. Optim. Theory Appl. 4 (1969), 87–98; ibid. 4 (1969), 167–181. MR 252036, DOI 10.1007/BF00927414
- Tosio Kato, Demicontinuity, hemicontinuity and monotonicity, Bull. Amer. Math. Soc. 70 (1964), 548–550. MR 163198, DOI 10.1090/S0002-9904-1964-11194-0
- George J. Minty, on a “monotonicity” method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038–1041. MR 162159, DOI 10.1073/pnas.50.6.1038
- Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 298508, DOI 10.1016/0001-8708(69)90009-7
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 35 (1972), 165-170
- MSC: Primary 47H99; Secondary 90C30
- DOI: https://doi.org/10.1090/S0002-9939-1972-0300163-5
- MathSciNet review: 0300163